首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Macronuclear DNA of hypotrichous ciliates is organized in short gene-sized molecules, each containing all regulatory sequences for autonomous replication and expression. In these organisms the histone genes are not clustered but dispersed on different molecules of various sizes. Two histone H4 genes containing fragments, one of 1.7 kb and one of 2.8 kb, were found in the macronucleus of Stylonychia lemnae. Restriction and sequence data reveal that the two genes-sized pieces are derived from different micronuclear precursors. Both histone H4 genes code for the same protein of 103 aminoacids but differ greatly in their 5'-and 3'-regions.  相似文献   

5.
L A Klobutcher  C L Jahn  D M Prescott 《Cell》1984,36(4):1045-1055
During the life cycle of the hypotrichous ciliate Oxytricha nova, a macronucleus containing short, gene-sized DNA molecules is produced from a copy of the chromosomal micronuclear genome. In order to characterize the process of macronuclear development, we have isolated and determined the DNA sequence of a particular macronuclear gene and its micronuclear precursor. The results of this analysis indicate that macronuclear telomeric sequences (5'C4A4(3') repeats) are not present at the ends of the gene in its micronuclear chromosomal location and must be added during development. In addition, the micronuclear copy of the gene contains three short blocks of sequence that must be removed during development, implying the involvement of a nucleic acid-splicing process in generating mature macronuclear genes.  相似文献   

6.
7.
A repetitive element from the hypotrichous ciliate Stylonychia lemnae was characterized by restriction and hybridization analysis. This repetitive element is present in about 5,000–7,000 copies per haploid genome in the micronucleus and the macronuclear anlagen. Its DNA sequence is very conserved, but the length of the repetitive sequence blocs is variable. In some cases, it is associated with telomeric sequences and macronucleus–homologous sequences. Restriction analysis of genomic micronuclear and macronuclear anlagen DNA and in situ hybridization showed that the repetitive sequences are amplified during the formation of polytene chromosomes. They are localized in many bands of the polytene chromosomes and are eliminated during the degradation of the polytene chromosomes. Possible functions of the repetitive sequences during macronuclear differentiation are discussed. Dev. Genet. 21:201–211, 1997.© 1997 Wiley-Liss, Inc.  相似文献   

8.
We describe the first known macronuclear chromosomes that carry more than one gene in hypotrichous ciliated protozoa. These 4.9- and 2.8-kbp chromosomes each consist almost exclusively of two protein-coding genes, which are conserved and transcribed. The two chromosomes share a common region that consists of a gene that is a member of the family of mitochondrial solute carrier genes (CR-MSC; [Williams and Herrick (1991): Nucleic Acids Res 19:4717–4724]. Each chromosome also carries another gene appended to its common region: The 4.9-kbp chromosome also carries a gene that encodes a protein that is rich in glutamine and charged amino acids and bears regions of heptad repeats characteristic of coiled-coils. Its function is unknown. The second gene of the 2.8 kbp chromosome is a mitochondrial solute carrier gene (LA-MSC); thus, the 2.8-kbp chromosome consists of two mitochondrial solute carrier paralogs. Phylogenetic analysis indicates that the two genes were duplicated before ciliates diverged from the main eukaryotic lineage and were subsequently juxtaposed. The CR- and LA-MSC genes are each interrupted by three introns. The introns are not in homologous positions, suggesting that they may have originated from multiple group II intron transpositions. These chromosomes and their genes are encoded in the Oxytricha germline by the 81 locus. This locus is alternatively processed to generate a nested set of three macronuclear chromosomes, the 4.9- and 2.8-kbp chromosomes and a third (1.6 kbp) which consists almost exclusively of the shared common gene, CR-MSC. Such alternative processing is common in macronuclear development of O. fallax [Cartinhour and Herrick (1984): Mol Cell Biol 4:931–938]. Possible functions for alternative processing are considered; e.g., it may serve to physically link genes to allow co-regulation or co-replication by a common cis-acting sequence. Dev. Genet. 20:348–357, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
ABSTRACT. Following mating or conjugation, the hypotrichous ciliate Euplotes crassus undergoes a massive genome reorganization process. While the nature of the rearrangement events has been well studied, little is known concerning proteins that carry out such processes. As a means of identifying such proteins, differential screening of a developmental cDNA library, as well as construction of a cDNA subtraction library, was used to isolate genes expressed only during sexual reproduction. Five different conjugation-specific genes have been identified that are maximally expressed early in conjugation, during the period of micronuclear meiosis, which is just prior to macronuclear development and the DNA rearrangement process. All five genes are retained in the mature macronucleus. Micronuclear, macronuclear, and cDNA clones of one gene ( conZ47 ) have been sequenced, and the results indicate that the gene encodes a putative DNA binding protein. In addition, the presence of an internal eliminated sequence in the micronuclear copy of the conZ47 gene indicates that this conjugation-specific gene is transcribed from the old macronucleus.  相似文献   

10.
11.
The accumulation of divergent histone H4 amino acid sequences within and between ciliate lineages challenges traditional views of the evolution of this essential eukaryotic protein. We analyzed histone H4 sequences from 13 species of ciliates and compared these data with sequences from well-sampled eukaryotic clades. Ciliate histone H4s differ from one another at as many as 46% of their amino acids, in contrast with the highly conserved character of this protein in most other eukaryotes. Equally striking, we find paralogs of histone H4 within ciliate genomes that differ by up to 25% of their amino acids, whereas paralogs in other eukaryotes share identical or nearly identical amino acid sequences. Moreover, the most divergent H4 proteins within ciliates are found in the lineages with highly processed macronuclear genomes. Our analyses demonstrate that the dual nature of ciliate genomes-the presence of a "germline" micronucleus and a "somatic" macronucleus within each cell-allowed the dramatic variation in ciliate histone genes by altering functional constraints or enabling adaptive evolution of the histone H4 protein, or both.  相似文献   

12.
The DNA in a micronucleus undergoes remarkable rearrangements when it develops into a macronucleus after cell mating in the hypotrichous ciliate. A Rab gene was isolated from the macronuclear plasmid mini-library of Euplotes octocarinatus. A micronuclear version of the Rab gene was amplified by polymerase chain reaction (PCR). The macronuclear DNA molecule carrying the Rab gene is 767 bp long and shows characteristics typical of macronuclear chromosomes of hypotrichous ciliates. Three of the five cysteines are encoded by the opal codon UGA. The deduced protein is a 207-amino acid (aa) with a molecular mass of 23 kDa. The protein shares 36% identity with Rab 1 protein of Plasmodium and yeast. Analysis of the sequences indicated that the micronuclear version of the Rab gene contains two internal eliminated sequences, internal eliminated sequence (IES)1 and IES2. IES1 is flanked by a pair of hepta-nucleotide 5'-AAATTTT-3' direct repeats, and IES2 is flanked by 5'-TA-3' direct repeats.  相似文献   

13.
J Scott  C Leeck    J Forney 《Nucleic acids research》1994,22(23):5079-5084
The micronuclear DNA of Paramecium contains sequences that are precisely excised during the formation of the macronuclear (somatic) genome. In this paper we show that four eliminated sequences ranging in size from 28 to 416 base pairs, are present in or near the micronuclear copy of the B surface protein gene. Each excised sequence is bounded by the dinucleotide 5'-TdA-3'. Comparison of the micronuclear B gene with the previously determined micronuclear sequence of the A surface protein gene shows that although the positions of at least three of the eliminated sequences are conserved in both genes, the sequences are highly divergent. Transformation of vegetative macronuclei with fragments of the micronuclear B gene results in replication and maintenance of the DNA, but the micronuclear specific sequences are not removed. Previous studies have shown that the correct incorporation of the B gene into the new macronucleus requires copies of the macronuclear B gene in the old macronucleus. Using macronuclear transformation, we show that the micronuclear B gene can substitute for the macronuclear B gene with regard to its role in DNA processing. This suggests that the macronuclear DNA is not acting as a guide for the excision of the micronuclear specific sequences.  相似文献   

14.
During the process of macronuclear development, the ciliate Euplotes crassus undergoes extensive programmed DNA rearrangement. Previous studies have identified a gene, H3(P), that is expressed only during sexual reproduction and is predicted to encode a variant histone H3 protein. In the current study, an antiserum to the H3(P) protein has been generated. The antiserum has been used to demonstrate that H3(P) is maximally expressed during the polytene chromosome stage of macronuclear development. Moreover, H3(P) is localized to the developing macronucleus, but not other nuclei present within the cell. Additional studies indicate that at least one additional variant histone is also present within the developing macronucleus. The results indicate that there are significant changes in nucleosome composition within the developing macronucleus, and provide additional support for the notion that changes in chromatin structure play a role in the DNA rearrangement processes of macronuclear development. genesis 26:179-188, 2000.  相似文献   

15.
Two introns in the pheromone 3-encoding gene of Euplotes octocarinatus.   总被引:4,自引:0,他引:4  
  相似文献   

16.
M Tan  K Heckmann  C Brünen-Nieweler 《Gene》1999,233(1-2):131-140
The micronuclear gene of the ciliated protozoan Euplotes octocarinatus (Eo) syngen 1 encoding the putative aminoacyl-tRNA synthetase cofactor (ARCE), as well as its macronuclear version and the corresponding cDNA, were amplified and sequenced. Analyses of the sequences revealed that the micronuclear gene contains two sequences (430 and 625bp long) that are missing in the macronuclear version of this gene. These sequences are called 'internal eliminated sequences' (IESs) and appear to occur in all ciliates. The two IESs are located in the coding region of the micronuclear gene. One IES is flanked by a pair of dinucleotide 5'-TA-3' direct repeats and the other one by a pair of hepta-nucleotide 5'-TTACTGA-3' direct repeats. Inside the two IESs, several other sequence repeats were found. The macronuclear DNA molecule carrying this gene is 1517bp long and shows characteristics typical of macronuclear chromosomes of hypotrichous ciliates. Copy number determination revealed that the molecule is amplified to only about 750 copies per macronucleus. The deduced protein is a 441-amino-acid (aa) polypeptide with a molecular mass of 50kDa. It shares a conserved endothelial monocyte-activating polypeptide II (EMAP II)-like carboxyl-terminal domain and a hydrophilic central domain containing a KEKE-motif with a group of proteins associated with aminoacyl-tRNA synthetases and tRNAs.  相似文献   

17.
Euplotes crassus, like other hypotrichous ciliated protozoa, eliminates most of its micronuclear chromosomal DNA in the process of forming the small linear DNA molecules that comprise the macronuclear genome. By characterizing randomly selected lambda phage clones of E. crassus micronuclear DNA, we have determined the distribution of repetitive and unique sequences and the arrangement of macronuclear genes relative to eliminated DNA. This allows us to compare the E. crassus micronuclear genome organization to that of another distantly related hypotrichous ciliate, Oxytricha nova. The clones from E. crassus segregate into three prevalent classes: those containing primarily eliminated repetitive DNA (Class I); those containing macronuclear genes in addition to repetitive sequences (Class II); and those containing only eliminated unique sequence DNA (Class III). All of the repetitive sequences in these clones belong to the same highly abundant repetitive element family. Our results demonstrate that the sequence organization of the E. crassus and O. nova micronuclear genomes is related in that the macronuclear genes are clustered together in the micronuclear genome and the eliminated unique sequences occur in long stretches that are uninterrupted by repetitive sequences. In both organisms a single repetitive element family comprises the majority of the eliminated interspersed middle repetitive DNA and appears to be preferentially associated with the macronuclear sequence clusters. The similarities in the sequence organization in these two organisms suggest that clustering of macronuclear genes plays a role in the chromosome fragmentation process.  相似文献   

18.
Organization of the Euplotes crassus micronuclear genome   总被引:11,自引:0,他引:11  
Euplotes crassus, like other hypotrichous ciliated protozoa, eliminates most of its micronuclear chromosomal DNA in the process of forming the small linear DNA molecules that comprise the macronuclear genome. By characterizing randomly selected lambda phage clones of E. crassus micronuclear DNA, we have determined the distribution of repetitive and unique sequences and the arrangement of macronuclear genes relative to eliminated DNA. This allows us to compare the E. crassus micronuclear genome organization to that of another distantly related hypotrichous ciliate, Oxytricha nova. The clones from E. crassus segregate into three prevalent classes: those containing primarily eliminated repetitive DNA (Class I); those containing macronuclear genes in addition to repetitive sequences (Class II); and those containing only eliminated unique sequence DNA (Class III). All of the repetitive sequences in these clones belong to the same highly abundant repetitive element family. Our results demonstrate that the sequence organization of the E. crassus and O. nova micronuclear genomes is related in that the macronuclear genes are clustered together in the micronuclear genome and the eliminated unique sequences occur in long stretches that are uninterrupted by repetitive sequences. In both organisms a single repetitive element family comprises the majority of the eliminated interspersed middle repetitive DNA and appears to be preferentially associated with the macronuclear sequence clusters. The similarities in the sequence organization in these two organisms suggest that clustering of macronuclear genes plays a role in the chromosome fragmentation process.  相似文献   

19.
20.
Oxytricha nova is a hypotrichous ciliate with micronuclei and macronuclei. Micronuclei, which contain large, chromosomal-sized DNA, are genetically inert but undergo meiosis and exchange during cell mating. Macronuclei, which contain only small, gene-sized DNA molecules, provide all of the nuclear RNA needed to run the cell. After cell mating the macronucleus is derived from a micronucleus, a derivation that includes excision of the genes from chromosomes and elimination of the remaining DNA. The eliminated DNA includes all of the repetitious sequences and approximately 95% of the unique sequences. We cloned large restriction fragments from the micronucleus that confer replication ability on a replication-deficient plasmid in Saccharomyces cerevisiae. Sequences that confer replication ability are called autonomously replicating sequences. The frequency and effectiveness of autonomously replicating sequences in micronuclear DNA are similar to those reported for DNAs of other organisms introduced into yeast cells. Of the 12 micronuclear fragments with autonomously replicating sequence activity, 9 also showed homology to macronuclear DNA, indicating that they contain a macronuclear gene sequence. We conclude from this that autonomously replicating sequence activity is nonrandomly distributed throughout micronuclear DNA and is preferentially associated with those regions of micronuclear DNA that contain genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号