首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Lin HY  Hopkins R  Cao HJ  Tang HY  Alexander C  Davis FB  Davis PJ 《Steroids》2005,70(5-7):444-449
Because the androgen and estrogen nuclear hormone receptors are subject to acetylation, we speculated that the nuclear thyroid hormone receptor-beta1 (TRbeta1), another superfamily member, was also subject to this posttranslational modification. Treatment of 293T cells that contain TRbeta1(wt) with l-thyroxine (T4)(10(-7)M, total concentration) resulted in the accumulation of acetylated TR in nuclear fractions at 30-45 min and a decrease in signal by 60 min. A similar time course characterized recruitment by TR of p300, a coactivator protein with intrinsic transacetylase activity. Recruitment by the receptor of SRC-1, a TR coactivator that also acetylates nucleoproteins, was also demonstrated. Inhibition of the MAPK (ERK1/2) signal transduction cascade by PD 98059 blocked the acetylation of TR caused by T4. Tetraiodothyroacetic acid (tetrac) decreased T4-induced acetylation of TR. At 10(-7)M, 3,5,3'-triiodo-l-thyronine (T3) was comparably effective to T4 in causing acetylation of TR. We studied acetylation in TR that contained mutations in the DNA-binding domain (DBD) (residues 128-142) that are known to be relevant to recruitment of coactivators and to include the MAPK docking site. In response to T4 treatment, the K128A TR mutant transfected into CV-1 cells recruited p300, but not SRC-1, and was subject to acetylation. R132A complexed with SRC-1, but not p300; it was acetylated equally well in both the absence and presence of T4. S142E was acetylated in the absence and presence of T4 and bound SRC-1 under both conditions; this mutant was also capable of binding p300 in the presence of T4. There was no serine phosphorylation of TR in any of these mutants. We conclude that (1) TRbeta1, like AR and ER, is subject to acetylation; (2) the process of acetylation of TR requires thyroid hormone-directed MAPK activity, but not serine phosphorylation of TR by MAPK, suggesting that the contribution of MAPK is upstream in the activation of the acetylase; (3) the amino acid residue 128-142 region of the DBD of TR is important to thyroid hormone-associated recruitment of p300 and SRC-1; (4) acetylation of TR DBD mutants that is directed by T4 appears to be associated with recruitment of p300.  相似文献   

5.
6.
7.
8.
9.
Ligand binding to the thyroid hormone nuclear receptor beta1 (TRbeta(1)) is inhibited by desethylamiodarone (DEA), the major metabolite of the widely used anti-arrhythmic drug amiodarone. Gene expression of thyroid hormone (triiodothyronine, T(3))-regulated genes can therefore be affected by amiodarone due to less ligand binding to the receptor. Previous studies have indicated the possibility of still other explanations for the inhibitory effects of amiodarone on T(3)-dependent gene expression, probably via interference with receptor/co-activator and co-repressor complex. The binding site of DEA is postulated to be on the outside surface of the receptor protein overlapping the regions where co-activator and co-repressor bind. Here we show the effect of a drug metabolite on the interaction of TRbeta(1) with the co-activator GRIP-1 (glucocorticoid receptor interacting protein-1). The T(3)-dependent binding of GRIP-1 to the TRbeta(1) is disrupted by DEA. A DEA dose experiment showed that the drug metabolite acts like an antagonist under 'normal' conditions (at 10(-7) M T(3) and 5x10(-6)-->10(-3) M DEA), but as an agonist under extreme conditions (at 0 and 10(-9) M T(3) and >10(-4) M DEA). To our knowledge, these results show for the first time that a metabolite of a drug which was not devised for this purpose can interfere with nuclear receptor/co-activator interaction.  相似文献   

10.
11.
During the third trimester of pregnancy, there is an increase in serum triglyceride and cholesterol levels. The mechanisms accounting for these changes in lipid metabolism during pregnancy are unknown. We hypothesized that, during pregnancy, the expression of nuclear hormone receptors involved in regulating lipid metabolism would decrease. In 19-day pregnant mice, serum triglyceride and non-HDL cholesterol levels were significantly increased, whereas total cholesterol was slightly decreased, because of a decrease in the HDL fraction. Peroxisome proliferator-activated receptor (PPAR)alpha, PPARbeta/delta, and PPARgamma, liver X receptor (LXR)alpha and LXRbeta, farnesoid X receptor (FXR), and retinoid X receptor (RXR)alpha, RXRbeta, and RXRgamma mRNA levels were significantly decreased in the livers of 19-day pregnant mice. Additionally, the expressions of thyroid receptor (TR)alpha, pregnane X receptor, sterol regulatory element-binding proteins (SREBP)-1a, SREBP-1c, SREBP-2, and liver receptor homolog 1 were also decreased, whereas the expression of TRbeta, constitutive androstane receptor, and hepatic nuclear factor 4 showed no significant change. mRNA levels of the PPAR target genes carnitine-palmitoyl transferase 1alpha and acyl-CoA oxidase, the LXR target genes SREBP1c, ATP-binding cassettes G5 and G8, the FXR target gene SHP, and the TR target genes malic enzyme and Spot14 were all significantly decreased. Finally, the expressions of PPARgamma coactivator (PGC)-1alpha and PGC-1beta, known activators of a number of nuclear hormone receptors, were also significantly decreased. The decreases in expression of RXRs, PPARs, LXRs, FXR, TRs, SREBPs, and PGC-1s could contribute to the alterations in lipid metabolism during late pregnancy.  相似文献   

12.
13.
Mutations in the thyroid hormone receptor (TR) beta gene result in resistance to thyroid hormone (RTH), characterized by reduced sensitivity of tissues to thyroid hormone. To understand which physiological TR pathways are affected by mutant receptors, we crossed mice with a dominantly negative TRbeta mutation (TRbetaPV) with mice carrying a TRbeta null mutation (TRbeta(-/-)) to determine the consequences of the TRbetaPV mutation in the absence of wild-type TRbeta. TRbeta(PV/-) mice are distinct from TRbeta(+/-) mice that did not show abnormalities in thyroid function tests. TRbeta(PV/-) mice are also distinct from TRbeta(PV/+) and TRbeta(-/-) mice in that the latter shows mild dysfunction in the pituitary-thyroid axis, whereas the former exhibit very severe abnormalities, including extensive papillary hyperplasia of the thyroid epithelium, indistinguishable from that observed in TRbeta(PV/PV) mice. Similar to TRbeta(PV/PV) mice, TRbeta(PV/-) mice exhibited impairment in weight gain. Moreover, the abnormal regulation patterns of T3-target genes in the tissues of TRbeta(PV/-) and TRbeta(PV/PV) mice were strikingly similar. Using TR isoforms and PV-specific antibodies in gel shift assays, we found that in vivo, PV competed with TRalpha1 for binding to thyroid hormone response elements in TRbeta(PV/-) mice as effectively as in TRbeta(PV/PV) mice. Thus, the actions of mutant TRbeta are markedly potentiated by the ablation of the second TRbeta allele, suggesting that interference with wild-type TRalpha1-mediated gene regulation by mutant TRbeta leads to severe RTH.  相似文献   

14.
15.
Molecular conjugates of hormone receptor-ligands with molecular probes or functional domains are finding diverse applications in chemical biology. Whereas many examples of hormone conjugates that target steroid hormone receptors have been reported, practical ligand conjugates that target the nuclear thyroid hormone receptor (TRbeta) are lacking. TR-targeting conjugate scaffolds based on the ligands GC-1 and NH-2 and the natural ligand triiodothyronine (T3) were synthesized and evaluated in vitro and in cellular assays. Whereas the T3 or GC-1 based conjugates did not bind TRbeta with high affinity, the NH-2 inspired fluorescein-conjugate JZ01 showed low nanomolar affinity for TRbeta and could be used as a nonradiometric probe for ligand binding. A related analogue JZ07 was a potent TR antagonist that is 13-fold selective for TRbeta over TRalpha. JZ01 localizes in the nuclei of TRbeta expressing cells and may serve as a prototype for other TR-targeting conjugates.  相似文献   

16.
In this report, we have studied the intracellular dynamics and distribution of the thyroid hormone receptor-beta (TRbeta) in living cells, utilizing fusions to the green fluorescent protein. Wild-type TRbeta was mostly nuclear in both the absence and presence of triiodothyronine; however, triiodothyronine induced a nuclear reorganization of TRbeta. By mutating defined regions of TRbeta, we found that both nuclear corepressor and retinoid X receptor are involved in maintaining the unliganded receptor within the nucleus. A TRbeta mutant defective in DNA binding had only a slightly altered nuclear/cytoplasmic distribution compared with wild-type TRbeta; thus, site-specific DNA binding is not essential for maintaining TRbeta within the nucleus. Both ATP depletion studies and heterokaryon analysis demonstrated that TRbeta rapidly shuttles between the nuclear and the cytoplasmic compartments. Cotransfection of nuclear corepressor and retinoid X receptor markedly decreased the shuttling by maintaining unliganded TRbeta within the nucleus. In summary, our findings demonstrate that TRbeta rapidly shuttles between the nucleus and the cytoplasm and that protein-protein interactions of TRbeta with various cofactors, rather than specific DNA interactions, play the predominant role in determining the intracellular distribution of the receptor.  相似文献   

17.
Li Y  Suino K  Daugherty J  Xu HE 《Molecular cell》2005,19(3):367-380
Mineralocorticoid receptor (MR) controls sodium homeostasis and blood pressure through hormone binding and coactivator recruitment. Here, we report a 1.95 A crystal structure of the MR ligand binding domain containing a single C808S mutation bound to corticosterone and the fourth LXXLL motif of steroid receptor coactivator-1 (SRC1-4). Through a combination of biochemical and structural analyses, we demonstrate that SRC1-4 is the most potent MR binding motif and mutations that disrupt the MR/SRC1-4 interactions abolish the ability of the full-length SRC1 to coactivate MR. The structure also reveals a compact steroid binding pocket with a unique topology that is primarily defined by key residues of helices 6 and 7. Mutations swapping a single residue at position 848 from helix H7 between MR and glucocorticoid receptor (GR) switch their hormone specificity. Together, these findings provide critical insights into the molecular basis of hormone binding and coactivator recognition by MR and related steroid receptors.  相似文献   

18.
Radiosequence analysis of peptide fragments of the estrogen receptor (ER) from MCF-7 human breast cancer cells has been used to identify cysteine 530 as the site of covalent attachment of an estrogenic affinity label, ketononestrol aziridine (KNA), and an antiestrogenic affinity label, tamoxifen aziridine (TAZ). ER from MCF-7 cells was covalently labeled with [3H]TAZ or [3H]KNA and purified to greater than 95% homogeneity by immunoadsorbent chromatography. Limit digest peptide fragments, generated by prolonged exposure of the labeled receptor to trypsin, cyanogen bromide, or Staphylococcus aureus V8 protease, were purified to homogeneity by high performance liquid chromatography (HPLC), and the position of the labeled residue was determined by sequential Edman degradation. With both aziridines, the labeled residue was at position 1 in the tryptic peptide, position 2 in the cyanogen bromide peptide, and position 7 in the V8 protease peptide. This localizes the site of labeling to a single cysteine at position 530 in the receptor sequence. The identity of cysteine as the site of labeling was confirmed by HPLC comparison of the TAZ-labeled amino acid (as the phenylthiohydantoin and phenylthiocarbamyl derivatives) and the KNA-labeled amino acid (as the phenylthiocarbamyl derivative) with authentic standards prepared by total synthesis. Cysteine 530 is located in the hormone binding domain of the receptor, near its carboxyl terminus. This location is consistent with earlier studies using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to analyze the size of the proteolytic fragments containing the covalent labeling sites for TAZ and KNA and the antigen recognition sites for monoclonal antibodies. The fact that both the estrogenic and antiestrogenic affinity labeling agents react covalently with the same cysteine indicates that differences in receptor-agonist and receptor-antagonist complexes do not result in differential covalent labeling of amino acid residues in the hormone binding domain.  相似文献   

19.
A major challenge in understanding nuclear hormone receptor function is to determine how the same ligand can cause very different tissue-specific responses. Tissue specificity may result from the presence of more than one receptor subtype arising from multiple receptor genes or alternative splicing. Recently, high affinity analogs of nuclear receptor ligands have been synthesized that show subtype selectivity. These analogs can greatly facilitate the study of receptor subtype-specific functions in organisms where mutational analysis is problematic or where it is desirable for receptors to be expressed in their normal physiological contexts. We describe here the effects of the synthetic thyroid hormone analog GC-1 on the metamorphosis of the frog Xenopus laevis. The most potent natural thyroid hormone, 3,5,3'-triidothyronine or T3, shows similar binding affinity and transactivation dose-response curves for both thyroid hormone receptor isotypes, designated TRalpha and TRbeta. GC-1, however, binds to and activates TRbeta at least an order of magnitude better than it does TRalpha. GC-1 efficiently induces death and resorption of premetamorphic tadpole tissues such as the gills and the tail, two tissues that strongly induce thyroid hormone receptor beta during metamorphosis. GC-1 has less effect on the growth of adult tissues such as the hindlimbs, which express high TRalpha levels. The effectiveness of GC-1 in inducing tail resorption and tail gene expression correlates with increasing TRbeta levels. These results illustrate the utility of subtype selective ligands as probes of nuclear receptor function in vivo.  相似文献   

20.
Activated nongenomically by l-thyroxine (T(4)), mitogen-activated protein kinase (MAPK) complexed in 10-20 min with endogenous nuclear thyroid hormone receptor (TRbeta1 or TR) in nuclear fractions of 293T cells, resulting in serine phosphorylation of TR. Treatment of cells with the MAPK kinase inhibitor, PD 98059, prevented both T(4)-induced nuclear MAPK-TR co-immunoprecipitation and serine phosphorylation of TR. T(4) treatment caused dissociation of TR and SMRT (silencing mediator of retinoid and thyroid hormone receptor), an effect also inhibited by PD 98059 and presumptively a result of association of nuclear MAPK with TR. Transfection into CV-1 cells of TR gene constructs in which one or both zinc fingers in the TR DNA-binding domain were replaced with those from the glucocorticoid receptor localized the site of TR phosphorylation by T(4)-activated MAPK to a serine in the second zinc finger of the TR DNA-binding domain. In an in vitro cell- and hormone-free system, purified activated MAPK phosphorylated recombinant human TRbeta1 (). Thus, T(4) activates MAPK and causes MAPK-mediated serine phosphorylation of TRbeta1 and dissociation of TR and the co-repressor SMRT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号