首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1) The effects of vanadate of hexose transport, 45Ca-exchange and (Na+, K+)-contents have been characterized in isolated adipose tissue and skeletal muscles of the rat. (2) In whole epididymal fat pads, vanadate (0.5–5.0 mM) markedly stimulated the uptake of 2-deoxyl[14C]glucose as well as the efflux of 3-O-[14C]methylglucose. (3) Within the same concentration range, vanadate induced an early increase in 45Ca-washout from preloaded fat pads. The maximum increases in the fractional losses of 3-O-[14C]methylglucose and 45Ca were significantly correlated (P < 0.001, r = 0.98). (4) In extensor digitorum longus and soleus muscles, vanadate (0.5–5.0 mM) stimulated the efflux of 3-O-[14C]methylglucose and this effect was preceded by a rise in the washout of 45Ca. The maximum increases in the fractional losses of 3-O-[14C]methyglucose and 45Ca were significantly correlated (P < 0.005, r = 0.98). (5) In extensor digitorum longus and soleus muscles, vanadate increased K+-contents and decreased Na+ contents. (6) The stimulation of 45Ca-washout presumably reflects an increase in the cytoplasmic Ca2+ level, brought about by an inhibitory effect of vanadate on the Ca2+-sensitive ATPase of the sarcoplasmic or the endoplasmic reticulum. As demonstrated for most other insulin-like agents (Sørensen, S.S., Christensen, F. and Clausen, T. (1980) Biochim. Biophys. Acta 602, 433–445), the stimulating effect of vanadate on glucose transport appears to be associated with or mediated by a rise in the cytoplasmic Ca2+ level.  相似文献   

2.
3.
(1) In order to assess the possible role of 3′,5′-(cyclic)adenosine monophosphate (cAMP) in the control of glucose transport, the effect of the nucleotide or agents known to increase its intracellular concentration on sugar transport or 45Ca2+ washout were characterized in epididymal fat pads, free fat cells and soleus muscles of the rat. (2) When added to the incubation medium, cAMP (0.1–2.0 mM) stimulated 3-O-[14C]methylglucose washout from fat pads. This effect was abolished by cytochalasin B, and additive to that induced by submaximal (10–25 μU/ml), but not by supramaximal (10 mU/ml) concentrations of insulin. (3) cAMP (2 mM) stimulated the conversion of [U-14C]glucose into CO2 and triacylglycerols. This effect was additive to that of insulin (100 μU/ml). (4) ACTH, glucagon, adrenaline, noradrenaline and salbutamol, which are all known to increase the cAMP content of adipose tissue, stimulated the washout of 3-O-[14C]methylglucose and 45Ca2+ from preloaded fat pads. The fractional losses of the two isotopes were significantly correlated (P < 0.001, r = 0.73). (5) In free fat cells, adrenaline (10−6 M) and salbutamol (10−5 M) stimulated the uptake of 3-O-[14C]methylglucose, and salbutamol (10−5 M) did not interfere with the stimulating effect of insulin (25 μU/ml) on sugar uptake. (6) In rat soleus muscles, adrenaline and salbutamol produced a dose-dependent stimulation of the washout of 3-O-[14C]methylglucose and 45Ca2+. The effect of adrenaline on sugar efflux was abolished by propranolol. (7) It is concluded that the activation of the glucose transport system by insulin is unlikely to be mediated by a drop in the cellular concentration of cAMP. An increase in cAMP brought about by β-adrenoceptor agonists or lipolytic hormones may induce a mobilization of calcium ions from cellular pools into the cytoplasm, which in turn leads to the activation of the glucose transport system demonstrated in the present as well as in several earlier studies.  相似文献   

4.
We have investigated the relation between the stimulation of sugar transport by Li+ and Li+-induced changes in cellular Ca2+ distribution. The fluxes of 3-O-[14C]methyl-D-glucose and 45Ca were measured in hemidiaphragm, soleus, and cardiac muscles of the rat, and cellular levels of Ca2+, Na+ and K+ were determined. Li+ increased in parallel the fluxes of 3-O-[14C]methyl-D-glucose and 45Ca in rat hemidiaphragm and soleus muscles. Sugar transport and Ca2+ efflux were also stimulated by Li+ in Ca2+-free medium, suggesting that in addition to increasing sarcolemmal Ca2+ influx, Li+ may also cause the release of Ca2+ from intracellular storage sites, presumably the mitochondria. Mitochondria were isolated from preparations of rat ventricular muscle exposed to Li+, and their Ca2+ content was determined. In rat cardiac muscle, Li+ stimulation of sugar transport was associated with decreased mitochondrial Ca2+ levels (indicating mitochondrial Ca2+ release) only under conditions of deteriorating mitochondrial function. Thus, Li+-induced changes in cellular Ca2+ distribution, which would increase cytosolic Ca2+ levels, were associated with stimulation of sugar transport. These observations support the hypothesis that the increased availability of cytosolic Ca2+ regulates the activity of the sugar transport system in muscle.  相似文献   

5.
Changes in glucose transport and metabolism in skeletal muscles of the obese-diabetic mice (db/db) was characterized using the perfused mouse hindquarter preparation. Metabolism of [5-3H]glucose, uptake of 3-O-[methyl-3H]glucose (methylglucose) and [2-14C]deoxyglucose (deoxyglucose) was studied under resting, electrically stimulated contracting, and insulin-stimulated conditions. Basal rate of methylglucose uptake was 255 +/- 18 and 180 +/- 9 microliter/15 min per ml intracellular fluid space for lean and db/db mice, respectively. The V- of methylglucose transport was decreased with no change in Km in the db/db mice. Both electrical stimulation and insulin (1/mU/ml) increased methylglucose uptake rate 2-fold in both lean and obese mice. We observed no significant change in insulin sensitivity in the db/db mice in stimulating methylglucose uptake which was subnormal under all conditions. Similar results were obtained using deoxyglucose. Likewise, uptake of glucose and 3H2O production from [5-3H]glucose were significantly reduced, both at rest and during electrically stimulated contraction in the db/db mouse. However, lactate production in the electrically stimulated db/db mouse preparations was not significantly different from that in the lean mice. These data suggest a major contribution from an impaired glucose transport activity to the reduction in glucose metabolism in the db/db mouse skeletal muscle.  相似文献   

6.
(1) In order to assess the possible role of 3′,5′-(cyclic)adenosine monophosphate (cAMP) in the control of glucose transport, the effect of the nucleotide or agents known to increase its intracellular concentration on sugar transport or 45Ca2+ washout were characterized in epididymal fat pads, free fat cells and soleus muscles of the rat. (2) When added to the incubation medium, cAMP (0.1–2.0 mM) stimulated 3-O-[14C]methylglucose washout from fat pads. This effect was abolished by cytochalasin B, and additive to that induced by submaximal (10–25 μU/ml), but not by supramaximal (10 mU/ml) concentrations of insulin. (3) cAMP (2 mM) stimulated the conversion of [U-14C]glucose into CO2 and triacylglycerols. This effect was additive to that of insulin (100 μU/ml). (4) ACTH, glucagon, adrenaline, noradrenaline and salbutamol, which are all known to increase the cAMP content of adipose tissue, stimulated the washout of 3-O-[14C]methylglucose and 45Ca2+ from preloaded fat pads. The fractional losses of the two isotopes were significantly correlated (P < 0.001, r = 0.73). (5) In free fat cells, adrenaline (10?6 M) and salbutamol (10?5 M) stimulated the uptake of 3-O-[14C]methylglucose, and salbutamol (10?5 M) did not interfere with the stimulating effect of insulin (25 μU/ml) on sugar uptake. (6) In rat soleus muscles, adrenaline and salbutamol produced a dose-dependent stimulation of the washout of 3-O-[14C]methylglucose and 45Ca2+. The effect of adrenaline on sugar efflux was abolished by propranolol. (7) It is concluded that the activation of the glucose transport system by insulin is unlikely to be mediated by a drop in the cellular concentration of cAMP. An increase in cAMP brought about by β-adrenoceptor agonists or lipolytic hormones may induce a mobilization of calcium ions from cellular pools into the cytoplasm, which in turn leads to the activation of the glucose transport system demonstrated in the present as well as in several earlier studies.  相似文献   

7.
8.
Glucose transport is regarded as the principal rate control step governing insulin-stimulated glucose utilization by skeletal muscle. To assess this step in human skeletal muscle, quantitative PET imaging of skeletal muscle was performed using 3-O-methyl-[11C]glucose (3-[11C]OMG) in healthy volunteers during a two-step insulin infusion [n = 8; 30 and 120 mU.min(-1).m(-2), low (LO) and high (HI)] and during basal conditions (n = 8). Positron emission tomography images were coregistered with MRI to assess 3-[11C]OMG activity in regions of interest placed on oxidative (soleus) compared with glycolytic (tibialis anterior) muscle. Insulin dose-responsive increases of 3-[11C]OMG activity in muscle were observed (P < 0.01). Tissue activity was greater in soleus than in tibialis anterior (P < 0.05). Spectral analysis identified that two mathematical components interacted to shape tissue activity curves. These two components were interpreted physiologically as likely representing the kinetics of 3-[11C]OMG delivery from plasma to tissue and the kinetics of bidirectional glucose transport. During low compared with basal, there was a sixfold increase in k3, the rate constant attributed to inward glucose transport, and another threefold increase during HI (0.012 +/- 0.003, 0.070 +/- 0.014, 0.272 +/- 0.059 min(-1), P < 0.001). Values for k3 were similar in soleus and tibialis anterior, suggesting similar kinetics for transport, but compartmental modeling indicated a higher value in soleus for k1, denoting higher rates of 3-[11C]OMG delivery to soleus than to tibialis anterior. In summary, in healthy volunteers there is robust dose-responsive insulin stimulation of glucose transport in skeletal muscle.  相似文献   

9.
Transport of 3-O-methyl-D-[14C]glucose by Sertoli cells cultured in plastic dishes, is competitively inhibited by glucose (Ki 4 microM). The glucose analogue was therefore used to study glucose transport in these cells in which it is not metabolized. Addition of follicle-stimulating hormone (FSH) (10 micrograms/ml) or dibutyryl cyclic AMP (1 mM) to the cells, increases transport of methylglucose by Sertoli cells. The increased transport results from increased influx and involves decrease in Km without change in Vmax. These changes in the kinetics of transport are seen with both FSH and dibutyryl cyclic AMP. FSH does not stimulate transport of methylglucose in peritubular fibroblasts nor in germ cells. In view of the importance of lactate as a substrate for spermatids (Mita and Hall, 1982) it is proposed that stimulation of the transport of glucose by Sertoli cells in response to FSH is important in the increased production of lactate by these cells in response to FSH and hence is one mechanism by which the tropic hormone enables the Sertoli cell to promote spermatogenesis.  相似文献   

10.
The uptake and the washout of 45Ca2+ and 32Pi is described in free fat-cells and whole epididymal fat-pads from fed rats. 2. In isolated fat-cells, the uptake of 45Ca2+ proceeds with an initial rapid phase of about 1 min duration, followed by a slower subsequent accumulation. In contrast with the rapid phase, the slow phase is inhibited by 2,4-dinitrophenol, warfarin, oligomycin and verapamil, shows saturation, and presumably represents transport across the plasma membrane. 3. The washout of 45Ca2+ from preloaded cells consists of a rapid (1 min) initial phase and a slow phase which is non-monoexponential, suggesting that the radioactive isotope is released from several cellular pools. 4. When Pi is omitted from the incubation medium, the slow phase of 45Ca uptake is almost abolished, and the washout of 45Ca from preloaded fat-cells is markedly accelerated. At elevated extracellular concentrations of Pi (2,4-6.2mM), the uptake of 45Ca is stimulated by 2-10-fold, and the release of the radioactive isotope from preloaded cells is inhibited. In whole epididymal fat-pads, variations in the extracellular concentration of Pi have no detectable effect on the uptake or the washout of 45Ca. 5. In isolated fat-cells, the accumulation of 32Pi is inhibited by 2,4-dinitrophenol or the omission of glucose from the incubation medium. In a Ca2+-depleted buffer, the uptake of 32Pi is diminished, and hyperosmolarity, which stimulates 45Ca uptake, also accelerates the accumulation of 32Pi. 6. It is concluded that in free fat-cells, the uptake and release of Ca2+ and Pi take place by closely interrelated processes, which are dependent on mitochondrial energy production.  相似文献   

11.
Insulin action on glucose transport and metabolism was studied in paraovarian adipocytes from 3-month-old female rats and compared with insulin action in epididymal adipocytes from closely age-matched males. At maximal insulin concentrations the stimulations of 2-deoxyglucose uptake (4-fold the basal value) and of [U-14C]glucose incorporation into CO2 and total lipids (3- and 2-fold the basal values respectively) were similar in adipocytes from rats of both sexes. At submaximal insulin concentrations (less than 0.2 nM) the ability of paraovarian adipocytes to transport and to metabolize glucose was higher than that of epididymal adipocytes; accordingly an increase in insulin binding was observed in paraovarian adipocytes as compared with epididymal adipocytes. These results show that paraovarian adipocytes from mature female rats were highly responsive to insulin, and exhibited a higher sensitivity to the hormone than did epididymal adipocytes from male rats of the same age.  相似文献   

12.
Changes in glucose transport and metabolism in skeletal muscles of the obese-diabetic mice (db/db) was characterized using the perfused mouse hindquarter preparation. Metabolism of [5-3H]glucose, uptake of 3-O-[methyl-3H]glucose (methylglucose) and [2-14C]deoxyglucose (deoxyglucose) was studied under resting, electrically stimulated contracting, and insulin-stimulated conditions. Basal rate of methylglucose uptake was 255 ± 18 and 180 ± 9 μl/15 min per ml intracellular fluid space for lean and db/db mice, respectively. The V? of methylglucose transport was decreased with no change in Km in the db/db mice. Both electrical stimulation and insulin (1/mU/ml) increased methylglucose uptake rate 2-fold in both lean and obese mice. We observed no significant change in insulin sensitivity in the db/db mice in stimulating methylglucose uptake which was subnormal under all conditions. Similar results were obtained using deoxyglucose. Likewise, uptake of glucose and 3H2O production from [5-3H]glucose were significantly reduced, both at rest and during electrically stimulated contraction in the db/db mouse. However, lactate production in the electrically stimulated db/db mouse preparations was not significantly different from that in the lean mice. These data suggest a major contribution from an impaired glucose transport activity to the reduction in glucose metabolism in the db/db mouse skeletal muscle.  相似文献   

13.
1. Lipogenesis was studied in vivo by giving mice 250mg. meals of [U-(14)C]glucose and measuring the disposition and incorporation of label. About 48% of the (14)C dose was eliminated as (14)CO(2) in the first 2hr. At 60min. after administration, 1.0, 1.9 and 11.9% of the dose was recovered as liver glycogen, liver fatty acid and carcass fatty acid respectively. Of the [(14)C]glucose converted into fat in the epididymal pads about 90% was present as glyceride fatty acid and 10% as glyceride glycerol. 2. Hepatic synthesis of fatty acid was depressed by dietary fat to a much greater extent than was synthesis outside the liver. Both feeding with fat and starvation decreased the proportion of the label taken up by adipose tissue present as fat (triglyceride) and increased the proportion of triglyceride label present as glyceride glycerol. These results are consistent with the hypothesis that the primary action of both these conditions in decreasing fat synthesis is to inhibit synthesis of fatty acids. 3. Turnover of body fat labelled in vivo from [U-(14)C]glucose was estimated from the decline in radioactivity measured over the first 24hr. of the experiment. The half-life of liver and extrahepatic fatty acids (excluding epididymal fat) was 16hr. and 3 days respectively. In contrast, no measurable decrease in radioactivity of the fatty acids of epididymal fat was observed for 7 days after administration of the [U-(14)C]glucose.  相似文献   

14.
15.
Influx of 45Ca2+ into Saccharomyces cerevisiae was measured under experimental conditions which enabled measurements of initial rate of transport across the plasma membrane, without interference by the vacuolar Ca2+ transport system. Addition of glucose or glycerol to the cells, after pre-incubation in glucose-free medium for 5 min, caused a rapid, transient increase in 45Ca2+ influx, reaching a peak at 3-5 min after addition of substrate. Ethanol, or glycerol added with antimycin A, had no effect on 45Ca2+ influx. We have shown previously that this increase is not mediated by an effect of the substrates on intracellular ATP levels. Changes in membrane potential accounted for only a part of the glucose-stimulated 45Ca2+ influx. The roles of intracellular acidification and changes in cellular cAMP in mediating the effects of glucose on 45Ca2+ influx were examined. After a short preincubation in glucose-free medium addition of glucose caused a decrease in the intracellular pH, [pH]i, which reached a minimum value after 3 min. A transient increase in the cellular cAMP level was also observed. Addition of glycerol also caused intracellular acidification, but ethanol or glycerol added with antimycin A had no effect on [pH]i. Artificial intracellular acidification induced by exposure to isobutyric acid or to CCCP caused a transient rise in Ca2+ influx but the extent of the increase was smaller than that caused by glucose, and the time-course was different. We conclude that intracellular acidification may be responsible for part of the glucose stimulation of Ca2+ influx.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The purpose of this study was to assess whether a prior bout of exercise enhances passive gut glucose absorption. Mongrel dogs had sampling catheters, infusion catheters, and a portal vein flow probe implanted 17 days before an experiment. Protocols consisted of either 150 min of exercise (n = 8) or rest (n = 7) followed by basal (-30 to 0 min) and a primed (150 mg/kg) intraduodenal glucose infusion [8.0 mg x kg-1x min-1, time (t) = 0-90 min] periods. 3-O-[3H]methylglucose (absorbed actively, facilitatively, and passively) and l-[14C]glucose (absorbed passively) were injected into the duodenum at t = 20 and 80 min. Phloridzin, an inhibitor of the active sodium glucose cotransporter-1 (SGLT-1), was infused (0.1 mg x kg-1 x min-1) into the duodenum from t = 60-90 min with a peripheral venous isoglycemic clamp. Duodenal, arterial, and portal vein samples were taken every 10 min during the glucose infusion, as well as every minute after each tracer bolus injection. Net gut glucose output in exercised dogs increased compared with that in the sedentary group (5.34 +/- 0.47 and 4.02 +/- 0.53 mg x kg-1x min-1). Passive gut glucose absorption increased approximately 100% after exercise (0.93 +/- 0.06 and 0.45 +/- 0.07 mg x kg-1 x min-1). Transport-mediated glucose absorption increased by approximately 20%, but the change was not significant. The infusion of phloridzin eliminated the appearance of both glucose tracers in sedentary and exercised dogs, suggesting that passive transport required SGLT-1-mediated glucose uptake. This study shows 1). that prior exercise enhances passive absorption of intraduodenal glucose into the portal vein and 2). that basal and the added passive gut glucose absorption after exercise is dependent on initial transport of glucose via SGLT-1.  相似文献   

17.
3-O-Methyl-D-glucose (methylglucose) is often used to study blood-brain barrier transport and the distribution spaces of hexoses in brain. A critical requirement of this application is that it not be chemically converted in the tissues. Recent reports of phosphorylation of methylglucose by yeast and heart hexokinase have raised questions about its metabolic stability in brain. Therefore, we have re-examined this question by studying the metabolism of methylglucose by yeast hexokinase and rat brain homogenates in vitro and rat brain, heart, and liver in vivo. Commercial preparations of yeast hexokinase did convert methylglucose to acidic products, but only when the enzyme was present in very large amounts. Methylglucose was not phosphorylated by brain homogenates under conditions that converted 97% of [U-14C]glucose to ionic derivatives. When [14C]methylglucose, labeled in either the methyl or glucose moiety, was administered to rats by an intravenous pulse or a programmed infusion that maintained the arterial concentration constant and total 14C was extracted from the tissues 60 min later, 97-100% of the 14C in brain, greater than 99% of the 14C in plasma, and greater than 90% of that in heart and liver were recovered as unmetabolized [14C]methylglucose. Small amounts of 14C in brain (1-3%), heart (3-6%), and liver (4-7%) were recovered in acidic products. Plasma glucose levels ranging from hypoglycemia to hyperglycemia had little influence on the degree of this conversion. The distribution spaces for methylglucose were found to be 0.52 in brain and heart and 0.75 in liver.  相似文献   

18.
Muscle contraction involves mobilization of intracellular Ca2+ and is associated with several metabolic adjustments, including increased glucose transport. In the present study isolated rat soleus muscles were exposed to 12-O-tetradecanoylphorbol 13-acetate, and responses to both insulin and contraction in terms of glucose transport were assessed. Muscles treated with this phorbol ester for 12 h showed an increased basal rate of 3-O-methylglucose uptake, and responded partially to insulin but did not respond to contraction. Phorbol-ester-treated and non-treated (vehicle-only) muscles were indistinguishable in terms of pre-contraction content of adenine nucleotide, phosphocreatine, lactate and glycogen, as well as contractile performance and contraction-induced glycogenolysis. Phorbol ester treatment of isolated solei for 12 h resulted in the loss of 90% of protein kinase C activity as determined with histone IIIs as substrate, and 70% as determined by using phorbol ester binding. It is concluded that treatment of solei with phorbol ester gives rise to a marked loss of contraction-induced glucose transport.  相似文献   

19.
1. Lipogenesis was studied in mice re-fed for up to 21 days after starvation. At appropriate times [U-(14)]glucose was given by stomach tube and incorporation of (14)C into various lipid fractions measured. 2. In mice starved for 48hr. and then re-fed for 4 days with a diet containing 1% of corn oil, incorporation of (14)C from [U-(14)C]glucose into liver fatty acids and cholesterol was respectively threefold and eightfold higher than in controls fed ad libitum. The percentages by weight of fatty acids and cholesterol in the liver also increased and reached peaks after 7 days. Both the radioactivity and weights of the fractions returned to control values after 10-14 days' re-feeding. These changes could be diminished by re-feeding the mice with a diet containing 20% of corn oil. Incorporation of (14)C from [U-(14)C]glucose into extrahepatic fatty acids (excluding those of the epididymal fat pads) was not elevated during re-feeding with a diet containing either 1% or 20% of corn oil. However, incorporation of (14)C from [U-(14)C]glucose into the fatty acids of the epididymal fat pads was increased in mice re-fed with either diet, as compared with non-starved controls. 3. Lipogenesis was also studied in mice alternately fed and starved. Mice given a diet containing 1% of corn oil for 6hr./day for 4 weeks lost weight initially and never attained the weight or carcass fat content of controls fed ad libitum. Incorporation of (14)C from dietary [U-(14)C]-glucose into the fatty acids of the epididymal fat pads was elevated threefold in the mice allowed limited access to food, although the incorporation into the remainder of the extrahepatic fatty acids was not different from that found for controls. Mice given a diet containing 20% of corn oil for 6hr./day adapted to the limited feeding regimen quicker and in 4 weeks did attain the weight and carcass fat content of controls. Incorporation of (14)C from [U-(14)C]glucose into the fatty acids of the epididymal fat pads and the remainder of the extrahepatic fatty acids was respectively fivefold and threefold higher than in controls fed ad libitum. 4. The elevation in liver lipogenesis during re-feeding was greatest on a diet containing 1% of corn oil, whereas in extrahepatic tissues the increase in lipogenesis was greater when the mice were re-fed or were allowed limited access to a diet containing 20% of corn oil. These results suggest that the causes of the increased rate of incorporation of (14)C from [U-(14)C]glucose into fatty acids during re-feeding may be different in liver from that in extrahepatic tissues.  相似文献   

20.
Rapid sequence measures of changes in the rate of 14CO2 production from [14C]glucose bathing the cells was abruptly reduced from 20 to 4 microunits/ml. Interpretation of the data in terms of glucose transport was based on calibration experiments that described the time course of change in 14CO2 production when [14C]glucose entry into adipocytes was slowed by reducing the specific activity of [14C]glucose in the incubation medium. All experiments were performed at 37 degrees in Krebs-Ringer bicarbonate buffer at pH 7.4. Termination of the glucose transport action of insulin (which includes insulin-receptor disassociation and all other steps leading to decelerated glucose entry) began within 2 min and was complete within 30 min. The transition from one steady state rate of glucose transport to the other could be approximated by an exponential process occurring with a half-time of 14 min. For comparison, the time course of initiation of the glucose transport action of insulin was measured under the same conditions. The transition curve was virtually identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号