首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Accumulation of polyunsaturated fatty acids (PUFA) in the fetal brain is accomplished predominantly via a highly selective flow of docosahexaenoic acid (22:6n-3, DHA) and arachidonic acid (20:4n-6, AA) through the placenta. Little is known regarding the endogenous capability of the fetus to generate its own DHA and AA from lower homologues such as linolenic (18:3n-3, ALA) and linoleic (18:2n-6, LA) acids, respectively. Deuterium-labeled d5-ALA and d5-LA at millimolar concentrations were injected directly into the amniotic fluid in order to investigate maternal-independent metabolic conversion of the stable isotopes in brain and liver of the fetus near delivery. After 48 h under adequate maternal diet, the levels of d5-ALA metabolites in the fetal brain and fetal liver were 45 ± 2.2 pmol/mg and 86 ± 4 pmol/mg of which 79% and 63.6% were comprised of d5-DHA. At this time point, incorporation of d5-LA metabolites was 103 ± 5 pmol/mg and 772 ± 46 pmol/mg for brain and liver, of which 50% and 30% were comprised of d5-AA. Following sustained maternal dietary ALA deficiency, the levels of total d5-ALA derived metabolites in the fetal brain and fetal liver were increased to 231 pmol/mg and 696 pmol/mg of which 71% and 26% were comprised of d5-DHA. From the time course and relative rates of d5-ALA precursor displacement by d5-DHA in cellular phosphoglycerides, it is concluded that the fetal rat brain can generate its own DHA from its d5-ALA precursors particularly under dietary stress.  相似文献   

2.
3.
Few studies have examined effects of feeding animals a diet deficient in n-6 polyunsaturated fatty acids (PUFAs) but with an adequate amount of n-3 PUFAs. To do this, we fed post-weaning male rats a control n-6 and n-3 PUFA adequate diet and an n-6 deficient diet for 15 weeks, and measured stable lipid and fatty acid concentrations in different organs. The deficient diet contained nutritionally essential linoleic acid (LA,18:2n-6) as 2.3% of total fatty acids (10% of the recommended minimum LA requirement for rodents) but no arachidonic acid (AA, 20:4n-6), and an adequate amount (4.8% of total fatty acids) of α-linolenic acid (18:3n-3). The deficient compared with adequate diet did not significantly affect body weight, but decreased testis weight by 10%. AA concentration was decreased significantly in serum (− 86%), brain (− 27%), liver (− 68%), heart (− 39%), testis (− 25%), and epididymal adipose tissue (− 77%). Eicosapentaenoic (20:5n-3) and docosahexaenoic acid (22:6n-3) concentrations were increased in all but adipose tissue, and the total monounsaturated fatty acid concentration was increased in all organs. The concentration of 20:3n-9, a marker of LA deficiency, was increased by the deficient diet, and serum concentrations of triacylglycerol, total cholesterol and total phospholipid were reduced. In summary, 15 weeks of dietary n-6 PUFA deficiency with n-3 PUFA adequacy significantly reduced n-6 PUFA concentrations in different organs of male rats, while increasing n-3 PUFA and monounsaturated fatty acid concentrations. This rat model could be used to study metabolic, functional and behavioral effects of dietary n-6 PUFA deficiency.  相似文献   

4.
The marine microalga Pavlova salina produces lipids containing approximately 50% omega-3 long chain polyunsaturated fatty acids (LC-PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Three cDNA sequences, designated PsD4Des, PsD5Des, PsD8Des, were isolated from P. salina and shown to encode three front-end desaturases with Delta4, Delta5 and Delta8 specificity, respectively. Southern analysis indicated that the P. salina genome contained single copies of all three front-end fatty acid desaturase genes. When grown at three different temperatures, analysis of fatty acid profiles indicated P. salina desaturation conversions occurred with greater than 95% efficiency. Real-Time PCR revealed that expression of PsD8Des was higher than for the other two genes under normal growth conditions, while PsD5Des had the lowest expression level. The deduced amino acid sequences from all three genes contained three conserved histidine boxes and a cytochrome b(5) domain. Sequence alignment showed that the three genes were homologous to corresponding desaturases from other microalgae and fungi. The predicted activities of these three front-end desaturases leading to the synthesis of LC-PUFA were also confirmed in yeast and in higher plants.  相似文献   

5.
To investigate the association between the polymorphisms of fatty acid desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2) and elongation of very long chain fatty acids like 2 (ELOVL2) gene and coronary artery disease (CAD) in a Chinese Han population. Three single nucleotide polymorphisms (SNPs) from these genes were genotyped using PCR-based restriction fragment length polymorphism analysis in 199 CAD cases and 192 controls of Han Chinese origin. rs174556 in the FADS1 gene showed allelic (P=0.002) and genotypic (P=0.030) association with the disease, while there was no disease association for the other two SNPs. The frequency of rs174556 minor allele (T) was significantly higher in the case group than the control group. The trans phase gene–gene interaction analysis showed that the combined genotype of rs174556 (T/T) and rs3756963 (T/T) was weakly associated with the disease (P=0.043). rs174556 in the FADS1 gene is very likely to be associated with CAD in the Chinese Han population.  相似文献   

6.
Very long-chain polyunsaturated fatty acids (VLC-PUFAs) are important dietary requirements for maintaining human health. Many marine microalgae are naturally high in ω − 3 VLC-PUFAs, however, the molecular mechanisms underpinning fatty acid (FA) desaturation and elongation in algae are poorly understood. An advanced molecular understanding would facilitate improvements of this nascent industry. We aimed to investigate expression responses of four front-end fatty acid desaturase genes and downstream effects on FA profiles to nitrogen limitation and cultivation growth stage in Isochrysis aff. galbana (TISO). Cultures were grown in nitrogen-replete and -deplete medium; samples were harvested during logarithmic, late logarithmic and stationary growth phases to analyse FA content/composition and gene expression of ?6-, ?8-, ?5- and ?4-desaturases (d6FAD (putative), d8FAD, d5FAD and d4FAD, respectively). d6FAD (putative) exhibited no differential expression, while d8FAD, d5FAD and d4FAD were significantly upregulated during logarithmic growth of nutrient-replete cultures, coinciding with rapid cell division. In conclusion, it is demonstrated that expression of some FADs in I. aff. galbana varies with culture age and nitrogen status which has downstream consequences on FA desaturation levels. This has implications for the commercial production of VLC-PUFAs where a trade-off between total lipid yield and VLC-PUFAs has to be made.  相似文献   

7.
In the liver, maintaining lipid homeostasis is regulated by physiological and exogenous factors. These lipids are synthesized by Fasn, elongases and desaturases. Interactions in an organism among these factors are quite complex and, to date, relatively little is known about them. The aim of this study was to evaluate the coexisting role of physiological (insulin, fasting and feeding) and exogenous (dietary lipids) factors in the control of gene expression of Fasn, elongases and desaturases via Srebf-1c in liver from rats. Gene expression of encoding enzymes for fatty acid synthesis and fatty acid composition was evaluated in liver from rats in fasting and feeding (at 30, 60, 90 and 120 min after feeding) when food intake (adequate or high-lipid diet) was synchronized to a restricted period of 7h. Fasn, Scd and Fads2 were induced during 120 min after initial feeding in both dietary groups. This induction may be activated in part by insulin via Srebf-1c. Also, we showed for the first time that Elovl7 may be regulated by insulin and dietary lipids. The failure to synthesize saturated and monounsaturated fatty acids is consistent with a downregulation of Fasn and Scd, respectively, by dietary lipids. A higher content of LC-PUFAs was observed due to a high expression of Elovl2 and Elovl5, although Fads2 was suppressed by dietary lipids. Therefore, elongases may have a mechanism that is Srebf-1c-independent. This study suggests that a high-lipid diet triggers, during 120 min after initial feeding, a tight coordination among de novo lipogenesis, elongation, and desaturation and may not always be regulated by Srebf-1c. Finally, upregulation by feeding (insulin) of Fasn, Scd, Fads2 and Srebf-1c is insufficient to compensate for the inhibitory effect of dietary lipids.  相似文献   

8.
Cellular functions are usually associated with the activity of proteins and nucleic acids. Recent studies have shown that lipids modulate the localization and activity of key membrane-associated signal transduction proteins, thus regulating the cell's physiology. Membrane Lipid Therapy aims to reverse cell dysfunctions (i.e., diseases) by modulating the activity of membrane signaling proteins through regulation of the lipid bilayer structure. The present work shows the ability of a series of 2-hydroxyfatty acid (2OHFA) derivatives, varying in the acyl chain length and degree of unsaturation, to regulate the membrane lipid structure. These molecules have shown greater therapeutic potential than their natural non-hydroxylated counterparts. We demonstrated that both 2OHFA and natural FAs induced reorganization of lipid domains in model membranes of POPC:SM:PE:Cho, modulating the liquid-ordered/liquid-disordered structures ratio and the microdomain lipid composition. Fluorescence spectroscopy, confocal microscopy, Fourier transform infrared spectroscopy and differential detergent solubilization experiments showed a destabilization of the membranes upon addition of the 2OHFAs and FAs which correlated with the observed disordering effect. The changes produced by these synthetic fatty acids on the lipid structure may constitute part of their mechanism of action, leading to changes in the localization/activity of membrane proteins involved in signaling cascades, and therefore modulating cell responses.  相似文献   

9.

Introduction

The hormonal milieus of pregnancy and lactation are driving forces of nutrient fluxes supporting infant growth and development. The decrease of insulin sensitivity with compensatory hyperinsulinemia with advancing gestation, causes adipose tissue lipolysis and hepatic de novo lipogenesis (DNL).

Subjects and methods

We compared fatty acid (FA) contents and FA-indices for enzyme activities between preterm (28–36 weeks) and term (37–42) milks, and between colostrum (2–5 days), transitional (6–15) and mature (16–56) milks. We interpreted FA differences between preterm and term milks, and their changes with lactation, in terms of the well known decrease of insulin sensitivity during gestation and its subsequent postpartum restoration, respectively.

Results

Compared with term colostrum, preterm colostrum contained higher indices of DNL in the breast (DNL-breast) and medium chain saturated-FA (MCSAFA), and lower DNL-liver and monounsaturated-FA (MUFA). Preterm milk also had higher docosahexaenoic acid (DHA) in colostrum and transitional milk and higher arachidonic acid (AA) in mature milk. Most preterm-term differences vanished with advancing lactation. In both preterm and term milks, DNL-breast and MCSAFA increased with advancing lactation, while DNL-liver, MUFA, long chain SAFA and AA decreased. DHA decreased in term milk. MUFA was inversely related to MCSAFA in all samples, correlated inversely with PUFA in colostrum and transitional milks, but positively in mature milk. MCSAFA correlated inversely with PUFA in mature milk.

Conclusion

Higher maternal insulin sensitivity at preterm birth may be the cause of lower MUFA (a proxy for DNL-liver) and higher MCSAFA (a proxy for DNL-breast) in preterm colostrum, compared with term colostrum. Restoring insulin sensitivity after delivery may be an important driving force for milk FA-changes in early lactation.  相似文献   

10.
During pregnancy and lactation, metabolic adaptations involve changes in expression of desaturases and elongases (Elovl2 and Elovl5) in the mammary gland and liver for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (AA) required for fetal and postnatal growth. Adipose tissue is a pool of LC-PUFAs. The response of adipose tissue for the synthesis of these fatty acids in a lipid-deficient diet of dams is unknown. The aim of this study was to explore the role of maternal tissue in the synthesis of LC-PUFAs in rats fed a low-lipid diet during pregnancy and lactation. Fatty acid composition (indicative of enzymatic activity) and gene expression of encoding enzymes for fatty acid synthesis were measured in liver, mammary gland and adipose tissue in rats fed a low-lipid diet. Gene expression of desaturases, elongases, fatty acid synthase (Fasn) and their regulator Srebf-1c was increased in the mammary gland, liver and adipose tissue of rats fed a low-lipid diet compared with rats from the adequate-lipid diet group throughout pregnancy and lactation. Genes with the highest (P < 0.05) expression in the mammary gland, liver and adipose tissue were Elovl5 (1333%), Fads2 (490%) and Fasn (6608%), respectively, in a low-lipid diet than in adequate-lipid diet. The percentage of AA in the mammary gland was similar between the low-lipid diet and adequate-lipid diet groups during the second stage of pregnancy and during lactation. The percentage of monounsaturated and saturated fatty acids was significantly (P < 0.05) increased throughout pregnancy and lactation in all tissues in rats fed a low-lipid diet than in rats fed an adequate-lipid diet. Results suggest that maternal metabolic adaptations used to compensate for lipid-deficient diet during pregnancy and lactation include increased expression of genes involved in LC-PUFAs synthesis in a stage- and tissue-specific manner and elevated lipogenic activity (saturated and monounsaturated fatty acid synthesis) of maternal tissues including adipose tissue.  相似文献   

11.
Epidemiological, human, animal, and cell culture studies show that n−3 fatty acids, especially α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), reduce the risk factors of cardiovascular diseases. EPA and DHA, rather than ALA, have been the focus of research on the n−3 fatty acids, probably due to the relatively inefficient conversion of ALA to EPA and DHA in rodents and humans. This review will assess our current understanding of the effects and potential mechanisms of actions of individual n−3 fatty acids on multiple risk factors of metabolic syndrome. Evidence for pharmacological responses and the mechanism of action of each of the n−3 fatty acid trio will be discussed for the major risk factors of metabolic syndrome, especially adiposity, dyslipidemia, insulin resistance and diabetes, hypertension, oxidative stress, and inflammation. Metabolism of n−3 and n−6 fatty acids as well as the interactions of n−3 fatty acids with nutrients, gene expression, and disease states will be addressed to provide a rationale for the use of n−3 fatty acids to reduce the risk factors of metabolic syndrome.  相似文献   

12.
Microbial lipids are becoming an attractive option for the industrial production of foods and oleochemicals. To investigate the lipid physiology of the oleaginous microorganisms, at the system level, genome-scale metabolic networks of Mortierella alpina and Mucor circinelloides were constructed using bioinformatics and systems biology. As scaffolds for integrated data analysis focusing on lipid production, consensus metabolic routes governing fatty acid synthesis, and lipid storage and mobilisation were identified by comparative analysis of developed metabolic networks. Unique metabolic features were identified in individual fungi, particularly in NADPH metabolism and sterol biosynthesis, which might be related to differences in fungal lipid phenotypes. The frameworks detailing the metabolic relationship between M. alpina and M. circinelloides generated in this study is useful for further elucidation of the microbial oleaginicity, which might lead to the production improvement of microbial oils as alternative feedstocks for oleochemical industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号