首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This paper describes the effect of different nutrients on the production of pyrazoloisoquinolinone antibiotics (APHE) by Streptomyces griseocarneus. In a chemically defined medium with glucose as carbon and l-lysine as nitrogen source all APHE antibiotics (APHE-1 to -3) are produced, APHE-3 being the most abundant. Propionate and butyrate used as precursors with glucose as main carbon source increased the production of APHE-1 and -2, respectively. The presence of propionate or butyrate reduced the production of APHE-3. Results obtained in minimal medium supplemented with l-valine and l-histidine indicate a relationship between these amino acids and APHE biosynthesis. These data, together with those obtained in the presence of precursors of fatty acids, also show possible links with fatty acid biosynthesis. Different nutritional requirements were found for APHE-3 production in comparison with APHE-1 and APHE-2. Received: 15 April 1999 / Received revision: 21 June 1999 / Accepted: 27 June 1999  相似文献   

2.
Summary Streptomyces clavuligerus produced simultaneously cephamycin C and clavulanic acid in defined medium in long-term fermentations and in resting-cell cultures. Biosynthesis of cephamycin by phosphate-limited resting cells was dissociated from clavulanic acid formation by removing either glycerol or sulphate from the culture medium. In absence of glycerol no clavulanic acid was formed but cephamycin production occurred, whereas in absence of sulphate no cephamycin was synthesized but clavulanic biosynthesis took place. Sulphate, sulphite and thiosulphate were excellent sulphur sources for cephamycin biosynthesis while l-methionine and l-cysteine were poor precursors of this antibiotic. Increasing concentrations of sulphate also stimulated clavulanic acid formation. The biosynthesis of clavulanic acid was much more sensitive to phosphate (10–100 mM) regulation than that of cephamycin. Therefore, the formation of both metabolites was pertially dissociated at 25 mM phosphate. By contrast, nitrogen regulation by ammonium salts or glutamic acid strongly reduced the biosynthesis of both cephamycin and clavulanic acid.  相似文献   

3.
?-Poly-l-lysine (?-PL), produced by Streptomyces or Kitasatospora strains, is a homo-poly-amino acid of l-lysine, which is used as a safe food preservative. In this study, the effects of l-lysine and its isomer, d-lysine, on ?-PL biosynthesis and their metabolites by the ?-PL-producing strain Streptomyces ahygroscopicus GIM8 were determined. The results indicated that l-lysine added into the fermentation medium in the production phase mainly served as a precursor for ?-PL biosynthesis during the flask culture phase, leading to greater ?-PL production. At an optimum level of 3 mM l-lysine, a ?-PL yield of 1.16 g/L was attained, with a 41.4% increment relative to the control of 0.78 g/L. Regarding d-lysine, the production of ?-PL increased by increasing its concentrations up to 6 mM in the initial fermentation medium. Interestingly, ?-PL production (1.20 g/L) with the addition of 3 mM d-lysine into the initial fermentation medium in flasks was higher than that of the initial addition of 3 mM L-lysine (1.06 g/L). The mechanism by which d-lysine improves ?-PL biosynthesis involves its utilization that leads to greater biomass. After S. ahygroscopicus GIM8 was cultivated in the defined medium with L-lysine, several key metabolites, including 5-aminovalerate, pipecolate, and l-2-aminoadipate formed in the cells, whereas only l-2-aminoadipate was observed after d-lysine metabolism. This result indicates that l-lysine and d-lysine undergo different metabolic pathways in the cells. Undoubtedly, the results of this study are expected to aid the understanding of ?-PL biosynthesis and serve as reference for the formulation of an alternative approach to improve ?-PL productivity using l-lysine as an additional substrate in the fermentation medium.  相似文献   

4.
Summary Corynebacterium glutamicum R-18 is a strain forl-isoleucine production. Polyethylene glycol (PEG)-induced protoplast fusion was applied to improve the strain of thisl-isoleucine producer. Strain R-18 was fused with anl-lysine producerC. glutamicum S-37, becausel-isoleucine andl-lysine are synthesized from a common intermediate, aspartate--semialdehyde. Two thousand fusants were checked for their phenotypes. Most of the fusants accumulatedl-lysine, and only 0.9% of the fusants accumulatedl-isoleucine. Two strains, F-28 and F-91, were selected and cultivated in production medium. Fusant F-28 accumulated 12.1 g/l ofl-isoleucine and 4.8 g/l ofl-lysine, and fusant F-91 accumulated 4.8 g/l ofl-isoleucine and 13.0 g/l ofl-lysine, while the parental strains R-18 and S-37 accumulated 9.5 g/l ofl-isoleucine and 26.8 g/l ofl-lysine, respectively. Sugar consumption activity was improved by protoplast fusion, and thel-isoleucine production rate of F-28 was 2.4 times higher than that of R-18.  相似文献   

5.
Kitasatospora kifunense, belonging to the Streptomycetaceae family, produces a basic homopolymer, ε-poly-l-lysine, which is used as a food preservative. We showed that ε-poly-l-lysine production in this bacterium on agar plates with iron started two or three days earlier than that on plates without iron. We also showed that iron added to a liquid culture medium increased ε-poly-l-lysine production by K. kifunense. Similarly, manganese and cobalt also promoted ε-poly-l-lysine production on agar plates. Moreover, cobalt promoted ε-poly-l-lysine production in liquid culture media. These results indicate that iron, manganese and cobalt are involved in regulating the ε-poly-l-lysine biosynthesis system in K. kifunense.  相似文献   

6.
l-Lysine is known to stimulate production of -lactam antibiotics byStreptomyces clavuligerus via provision of the lysine breakdown product,l--aminoadipic acid, which is a limiting precursor. Previous investigations utilized levels of 10–20 mMl-lysine as an addition to chemically-defined media resulting in 50–100% improvement in antibiotic production. We were surprised to note that as the concentration was further increased, the organism responded by producing even higher titers of antibiotics. The optimum concentration of 100 mMl-lysine yielded an approximate 500% increase in production with only minor effects on growth.dl- andd-lysine also exerted enhancements suggesting the presence of a lysine racemase or some other route fromd-lysine tol--aminoadipate in this organism;d-lysine was considerably less potent thandl- orl-lysine.Participant in the MIT Undergraduate Research Opportunities Programs (UROP)  相似文献   

7.
Summary A kinetic model describing the biosynthesis of celphalosporin C in Cephalosporium acremonium has been developed to identify the rate-limiting step(s). Using this model and in-vitro kinetic data of the biosynthetic enzymes, the production kinetics of cephalosporin C were examined theoretically. The predicted time profile of the specific production rate during batch culture is in good agreement with that of experimental results published previously. Sensitivity analysis indicates that -(l--aminoadipyl)-l-cysteinyl-d-valine (ACV) synthetase is the rate-limiting enzyme. Our analysis also predicts that increasing ACV synthetase enhances the production rate initially until expandase/hydroxylase becomes rate-limiting. Furthermore, increasing expandase/hydroxylase reduces the accumulation of penicillin N, and thus, enhances the production of cephalosporin C. Based on our analysis, amplifying both ACV synthetase and expandase/hydroxylase concurrently should enhance the production rate to a great extent.Correspondence to: W. S. Hu  相似文献   

8.
In Bacteria, the pathways of polyamine biosynthesis start with the amino acids l-lysine, l-ornithine, l-arginine, or l-aspartic acid. Some of these polyamines are of special interest due to their use in the production of engineering plastics (e.g., polyamides) or as curing agents in polymer applications. At present, the polyamines for industrial use are mainly synthesized on chemical routes. However, since a commercial market for polyamines as well as an industry for the fermentative production of amino acid exist, and since bacterial strains overproducing the polyamine precursors l-lysine, l-ornithine, and l-arginine are known, it was envisioned to engineer these amino acid-producing strains for polyamine production. Only recently, researchers have investigated the potential of amino acid-producing strains of Corynebacterium glutamicum and Escherichia coli for polyamine production. This mini-review illustrates the current knowledge of polyamine metabolism in Bacteria, including anabolism, catabolism, uptake, and excretion. The recent advances in engineering the industrial model bacteria C. glutamicum and E. coli for efficient production of the most promising polyamines, putrescine (1,4-diaminobutane), and cadaverine (1,5-diaminopentane), are discussed in more detail.  相似文献   

9.
Intracellular precursor supply is a critical factor for amino acid productivity of Corynebacterium glutamicum. To test for the effect of improved pyruvate availability on l-lysine production, we deleted the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex (PDHC) in the l-lysine-producer C. glutamicum DM1729 and characterised the resulting strain DM1729-BB1 for growth and l-lysine production. Compared to the host strain, C. glutamicum DM1729-BB1 showed no PDHC activity, was acetate auxotrophic and, after complete consumption of the available carbon sources glucose and acetate, showed a more than 50% lower substrate-specific biomass yield (0.14 vs 0.33 mol C/mol C), an about fourfold higher biomass-specific l-lysine yield (5.27 vs 1.23 mmol/g cell dry weight) and a more than 40% higher substrate-specific l-lysine yield (0.13 vs 0.09 mol C/mol C). Overexpression of the pyruvate carboxylase or diaminopimelate dehydrogenase genes in C. glutamicum DM1729-BB1 resulted in a further increase in the biomass-specific l-lysine yield by 6 and 56%, respectively. In addition to l-lysine, significant amounts of pyruvate, l-alanine and l-valine were produced by C. glutamicum DM1729-BB1 and its derivatives, suggesting a surplus of precursor availability and a further potential to improve l-lysine production by engineering the l-lysine biosynthetic pathway. This study is dedicated to Prof. Dr. Hermann Sahm on the occasion of his 65th birthday.  相似文献   

10.
Summary Biotransformations were developed to oxidize N-carbobenzoxy(CBZ)-l-lysine and to reduce the product keto acid to l-CBZ-oxylysine. Lysyl oxidase (l-lysine: O2 oxidoreductase, EC 1.4.3.14) from Trichoderma viride was relatively specific for l-lysine and had very low activity with N-substituted derivatives. l-Amino acid oxidase (l-amino acid: O2 oxidoreductase [deaminating], EC 1.4.3.2) from Crotalus adamanteus venom had low activity with l-lysine but high activity with N-formyl-, t-butyoxycarbonyl(BOC)-, acetyl-, trifluoroacetyl-, or CBZ-l-lysine. l-2-Hydroxyisocaproate dehydrogenase (EC 1.1.1.-) from Lactobacillus confusus catalyzed the reduction by NADH of the keto acids from N-acetyl-, trifluoroacetyl-, formyl- and CBZ-l-lysine but was inactive with the products from oxidation of l-lysine, l-lysine methyl ester, l-lysine ethyl ester or N-t-BOC-l-lysine. Providencia alcalifaciens (SC9036, ATCC 13159) was a good microbial substitute for the snake venom oxidase and also provided catalase (H2O2:H2O2 oxidoreductase EC 1.11.1.6). N-CBZ-l-Lysine was converted to CBZ-l-oxylysine in 95% yield with 98.5% optical purity by oxidation using P. alcalifaciens cells followed by reduction of the keto acid using l-2-hydroxyisocaproate dehydrogenase. NADH was regenerated using formate dehydrogenase (formate: NAD oxidoreductase, EC 1.2.1.2) from Candida boidinii. The Providencia oxidase was localized in the particulate fraction and catalase activity was predominantly in the soluble fraction of sonicated cells. The pH optima and kinetic constants were determined for the reactions. Correspondence to: R. L. Hanson  相似文献   

11.
    
Summary Mutants of Candida maltosa were isolated that lacked saccharopine reductase (lys9) and saccharopine dehydrogenase (lys1) and were able to accumulate -aminoadipate--semialdehyde (AASA) in the cell and excrete it into the culture medium. The effects of incubation time, lysine concentration, and carbon and nitrogen sources on AASA production were examined. In the presence of 15 g glucose/1, 1.25 g NH4H2PO4/l and 50 mg l-lysine/l in a minimal salt medium C. maltosa G285 (lys1) produced about 80–90 mg AASA/l during 48 h of growth. A simple and rapid procedure to isolate AASA from the medium using Dowex 50X4 is described.  相似文献   

12.
The transport specificity of system y+L of human erythrocytes was investigated and the carrier was found to accept a wide range of amino acids as substrates. Relative rates of entry for various amino acids were estimated from their trans-effects on the unidirectional efflux of l-[14C]-lysine. Some neutral amino acids, l-lysine and l-glutamic acid induced marked trans-acceleration of labeled lysine efflux; saturating concentrations of external l-leucine and l-lysine increased the rate by 5.3±0.63 and 6.2±0.54, respectively. The rate of translocation of the carrier-substrate complex is less dependent on the structure of the amino acid than binding. Translocation is slower for the bulkier analogues (l-tryptophan, l-phenylalanine); smaller amino acids, although weakly bound, are rapidly transported (l-alanine, l-serine). Half-saturation constants (±sem) calculated from this effect (l-lysine, 10.32±0.49 m and l-leucine, 11.50±0.50 m) agreed with those previously measured in cis-inhibition experiments. The degree of trans-acceleration caused by neutral amino acids did not differ significantly in Na+, Li+ or K+ medium, whereas the affinity for neutral amino acids was dramatically decreased if Na+ or Li+ were replaced by K+. The observation that specificity is principally expressed in substrate binding indicates that the carrier reorientation step is largely independent of the forces of interaction between the carrier and the transport site.We wish to thank Dr C.A.R. Boyd for helpful discussions and Prof. H.N. Christensen for sharing with us very relevant bibliographic material. We are grateful to FONDECYT (1282/91) and DTI (B 2674) (Chile) for financial assistance.  相似文献   

13.
Metabolism ofl-[U-14C]lysine was studied in the human autopsy tissues and the intact monkeys through intracerebroventricular and intravenous injections. The human tissues were more active in the metabolism ofl-[14C]lysine to [14C]pipecolate than the rat tissues previously reported. This metabolism was equally active in the phosphate (pH 7) and the glycyl-glycine (pH 8.6) buffers with the brain and the kidney having higher activity than the liver. Besides [14C]pipecolate, traces of [14C]saccharopine and -[14C]aminoadipate were also detected in the liver incubation. Twenty-four hr after intraventricular injection ofl-[14C]lysine to the monkey, substantial labeling of pipecolate and -aminoadipate was observed in the brain and spinal cord, with the kidney, liver and the plasma having much reduced levels. Radioactivity levels of these two compounds were found low in the organs and plasma of the intravenously injected monkey. The urine of both monkeys contained only traces of [14C]pipecolate, even though it contained high levels ofl-[14C]lysine and -[14C]aminoadipate. It was concluded thatl-lysine is actively metabolized to pipecolate and -aminoadipate in the human and the monkey, that this reaction is most active in the brain whenl-lysine is intraventricularly administered, and that in contrast to the rat, the monkey may have an effective renal reabsorption for pipecolate which is similar to the human.  相似文献   

14.
Streptomyces albulus NBRC14147 produces ɛ-poly-l-lysine (ɛ-PL), which is an amino acid homopolymer antibiotic. Despite the commercial importance of ɛ-PL, limited information is available regarding its biosynthesis; the l-lysine molecule is directly utilized for ɛ-PL biosynthesis. In most bacteria, l-lysine is biosynthesized by an aspartate pathway. Aspartokinase (Ask), which is the first enzyme in this pathway, is subject to complex regulation such as through feedback inhibition by the end-product amino acids such as l-lysine and/or l-threonine. S. albulus NBRC14147 can produce a large amount of ɛ-PL (1–3 g/l). We therefore suspected that Ask(s) of S. albulus could be resistant to feedback inhibition to provide sufficient l-lysine for ɛ-PL biosynthesis. To address this hypothesis, in this study, we cloned the ask gene from S. albulus and investigated the feedback inhibition of its gene product. As predicted, we revealed the feedback resistance of the Ask; more than 20% relative activity of Ask was detected in the assay mixture even with extremely high concentrations of l-lysine and l-threonine (100 mM each). We further constructed a mutated ask gene for which the gene product Ask (M68V) is almost fully resistant to feedback inhibition. The homologous expression of Ask (M68V) further demonstrated the increase in ɛ-PL productivity.  相似文献   

15.
Our earlier observations showed thatl-lysine enhanced the activity of diazepam against seizures induced by pentylenetetrazol (PTZ), and increased the affinity of benzodiazepine receptor binding in a manner additive to that caused by -aminobutyric acid (GABA). The present paper provides additional evidence to show thatl-lysine has central nervous system depressant-like characteristics.l-lysine enhanced [3H]flunitrazepam (FTZ) binding in brain membranes was dose-dependent and stimulated by chloride, bromide and iodide, but not fluoride. Enhancement of [3H]FTZ binding byl-lysine at a fixed concentration was increased by GABA but inhibited by pentobarbital between 10–7 to 10–3M. While GABA enhancement of [3H]FTZ binding was inhibited by the GABA mimetics imidazole acetic acid and tetrahydroisoxazol pyridinol, the enhancement by pentobarbital andl-lysine of [3H]FTZ binding was dose-dependently increased by these two GABA mimetics. The above results suggest thatl-lysine and pentobarbital acted at the same site of the GABA/benzodiazepine receptor complex which was different from the GABA binding site. The benzodiazepine receptor antagonist imidazodiazepine Ro15-1788 blocked the antiseizure activity of diazepam against PTZ. Similar to pentobarbital, the anti-PTZ effect ofl-lysine was not blocked by Ro15-1788. Picrotoxinin and the GABA, receptor antagonist bicuculline partially inhibitedl-lysine's enhancement of [3H]FTZ binding with the IC50s of 2 M and 0.1 M, respectively. The convulsant benzodiazepine Ro5-3663 dose-dependently inhibited the enhancement of [3H]FTZ binding byl-lysine. This article shows the basic amino acidl-lysine to have a central nervous system depressant characteristics with an anti-PTZ seizure activity and an enhancement of [3H]FTZ binding similar to that of barbiturates but different from GABA.  相似文献   

16.
Summary Growth and l-threonine productivity of l-threonine producer Escherichia coli H-4290 were inhibited by precursor amino acids, l-homoserine and l-aspartate. l-Threonine hyper-producers were isolated among the mutants resistant to l-homoserine and l-aspartate. Mutants H-4351 (Homr) and H-4578 (Homr, Aspr) accumulated 22.2 g/l and 24.3 g/l of l-threonine in test tube cultures, while the parental strain H-4290 accumulated 18.2 g/l. The enzyme level of aspartokinase I (first enzyme of the threonine operon) was enhanced 2.3 times (H-4351) and 3 times (H-4578) that of H-4290. Mutant H-4578 accumulated 76 g/l of l-threonine in a 2-l jar fermentor after 75 h cultivation.Abbreviations DAP diaminopimeric acid - Met l poor growth in methionine-free medium - AHV -amino--hydroxyvaleric acid - Thr-N- lack of ability to utilize l-threonine as a nitrogen source - Rif rifampicin - Lys+Metr resistant to l-lysine and dl-methionine  相似文献   

17.
A simple synthetic medium with glycine,l-tryptophan anddl-alanine was developed for study of antimycin A biogenesis. The strain produced 550 mg of mycelium dry weight and 200 μg of antimycin A per 100 ml of this medium. Intense biosynthesis of antibiotic was initiated in early fermentation and optimum yields were achieved after an additional 96 h incubation. No absolute relationship between growth rate and antimycin A production intensity was found. Biogenesis of antimycin A via tryptophan and formylkynurenine is suggested and similarity in early biogenesis of both antimycin A and actinomycin is considered.  相似文献   

18.
Summary We have characterized a mutant of Streptomyces clavuligerus NRRL 3585 which is almost completely blocked in cephalosporin biosynthesis and exhibits depressed activities of both the delta(l-alpha-aminoadipyl)-l-cysteinyl-d-valine (ACV) synthetase and cyclase enzymes of the cephalosporin pathway. A wild-type DNA region was cloned which partially restores antibiotic production, ACV synthetase and cyclase activities to this mutant. The recombinant plasmid exhibits a variable copy number in different transformants. Hybridization experiments indicate that sequences homologous to the cloned region are present in various -lactam-producing Streptomyces spp. but absent in species which are not known to produce this class of antibiotics. Furthermore, the chromosomal copy of the cloned region lies in close proximity to a gene coding for the isopenicilin N synthase gene of the cephalosphorin pathway.Offprint requests to: J. Piret  相似文献   

19.
Spiramycin production was highly stimulated when lysine was used as the sole nitrogen source. This amino acid was catabolized by the -transaminase pathway characterized by dosage of cadaverine aminotransferase (CAT) enzyme. The Kmcadaverine was of 57mM. CAT was highly induced by lysine (634% in comparison with ammonium). Addition of 40mm of ammonium in a culture begun with 20mm of lysine as the sole initial nitrogen source repressed CAT biosynthesis by 24% but did not affect spiramycin production seriously. Addition of 20mm of lysine in a culture started with 40mm ammonium induced CAT biosynthesis of 425%, but did not allow spiramycin production. In these two cases, spiramycin production seems to be conditioned by the nitrogen source initially present in the culture medium. CAT activity was inhibited by ammonium ions (33% at 20mm), whereas lysine had no effects.  相似文献   

20.
ε-Poly-l-lysine (ε-PL), one of the only two homo-poly amino acids known in nature, is used as a preservative. In this study, strategies of feeding precursor l-lysine into 5 L laboratory scale fermenters, including optimization of l-lysine concentration and time, was investigated to optimize the production of ε-PL by Streptomyces sp. M-Z18. The optimized strategy was then used in ε-PL fed-batch fermentation in which glucose and glycerol served as mixed carbon sources. In this way, a novel ε-PL production strategy involving precursor l-lysine coupled with glucose–glycerol co-fermentation was developed. Under optimal conditions, ε-PL production reached 37.6 g/l, which was 6.2 % greater than in a previous study in which glucose and glycerol co-fermentation was performed without added l-lysine (35.14 g/l). To the best of our knowledge, this is the first report of the enhancement of ε-PL production through l-lysine feeding to evaluate the use of fermenters. Meanwhile, the role of l-lysine in the promotion of ε-PL production, participating ε-PL synthesis as a whole, was first determined using the l-[U–13C] lysine labeling method. It has been suggested that the bottleneck of ε-PL synthesis in Streptomyces sp. M-Z18 is in the biosynthesis of precursor l-lysine. The information obtained in the present work may facilitate strain improvement and efficient large-scale ε-PL production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号