首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Our goal is to understand the impact of chromatin structure on cell proliferation, cell and tissue aging, cancer and cancer therapies. To this end, we have investigated the formation of specialized domains of facultative heterochromatin, called Senescence Associated Heterochromatin Foci (SAHF), in senescent human cells. A complex of histone chaperones, HIRA and ASF1a, drives formation of SAHF. Remarkably, although SAHF are highly compacted domains of heterochromatin, these domains of facultative heterochromatin largely exclude other domains of chromatin at telomeres and pericentromeres, which are themselves thought to be constitutively heterochromatic. The relationship between SAHF formation and these other domains of heterochromatin is discussed. Also, in the course of our studies, we have obtained evidence that points to a novel function for the widely-studied but poorly-understood family of heterochromatin proteins, HP1 proteins. We propose that HP1 proteins are essential components of a dynamic nuclear response that senses and rectifies defects in epigenetic information, encoded in chromatin through histone modifications and DNA methylation. We further propose that defects in this essential "chromatin repair" response in transformed human cells contributes to the preferential killing of cancer cells by the epigenetic cancer therapies that are currently in clinical development.  相似文献   

3.
4.
5.
What histone code for DNA repair?   总被引:8,自引:0,他引:8  
  相似文献   

6.
We propose a model for heterochromatin assembly that links DNA methylation with histone methylation and DNA replication. The hypomethylated Arabidopsis mutants ddm1 and met1 were used to investigate the relationship between DNA methylation and chromatin organization. Both mutants show a reduction of heterochromatin due to dispersion of pericentromeric low-copy sequences away from heterochromatic chromocenters. DDM1 and MET1 control heterochromatin assembly at chromocenters by their influence on DNA maintenance (CpG) methylation and subsequent methylation of histone H3 lysine 9. In addition, DDM1 is required for deacetylation of histone H4 lysine 16. Analysis of F(1) hybrids between wild-type and hypomethylated mutants revealed that DNA methylation is epigenetically inherited and represents the genomic imprint that is required to maintain pericentromeric heterochromatin.  相似文献   

7.
8.
Facultative heterochromatin is a cytological manifestation of epigenetic mechanisms that regulate gene expression. Constitutive heterochromatin is marked by distinctive histone H3 methylation and the presence of HP1 proteins, but the chromatin modifications of facultative heterochromatin are less clear. We have examined histone modifications and HP1 in the facultative heterochromatin of nucleated erythrocytes and show that mouse and chicken erythrocytes have different mechanisms of heterochromatin formation. Mouse embryonic erythrocytes have abundant HP1, increased tri-methylation of H3 at K9 and loss of H3 tri-methylation at K27. In contrast, we show that HP1 proteins are lost during the differentiation of chicken erythrocytes, and that H3 tri-methylation at both K9 and K27 is reduced. This coincides with the appearance of the variant linker histone H5. HP1s are also absent from erythrocytes of Xenopus and zebrafish. Our data show that in the same cell lineage there are different mechanisms for forming facultative heterochromatin in vertebrates. To our knowledge, this is the first report of cell types that lack HP1s and that have gross changes in the levels of histone modifications.  相似文献   

9.
10.
11.
The heterochromatin protein 1 (HP1) family is thought to be an important structural component of heterochromatin. HP1 proteins bind via their chromodomain to nucleosomes methylated at lysine 9 of histone H3 (H3K9me). To investigate the role of HP1 in maintaining heterochromatin structure, we used a dominant negative approach by expressing truncated HP1alpha or HP1beta proteins lacking a functional chromodomain. Expression of these truncated HP1 proteins individually or in combination resulted in a strong reduction of the accumulation of HP1alpha, HP1beta, and HP1gamma in pericentromeric heterochromatin domains in mouse 3T3 fibroblasts. The expression levels of HP1 did not change. The apparent displacement of HP1alpha, HP1beta, and HP1gamma from pericentromeric heterochromatin did not result in visible changes in the structure of pericentromeric heterochromatin domains, as visualized by DAPI staining and immunofluorescent labeling of H3K9me. Our results show that the accumulation of HP1alpha, HP1beta, and HP1gamma at pericentromeric heterochromatin domains is not required to maintain DAPI-stained pericentromeric heterochromatin domains and the methylated state of histone H3 at lysine 9 in such heterochromatin domains.  相似文献   

12.
Verdel A  Moazed D 《FEBS letters》2005,579(26):5872-5878
Heterochromatin is an epigenetically heritable and conserved feature of eukaryotic chromosomes with important roles in chromosome segregation, genome stability, and gene regulation. The formation of heterochromatin involves an ordered array of chromatin changes, including histone deacetylation, histone H3-lysine 9 methylation, and recruitment of histone binding proteins such as Swi6/HP1. Recent discoveries have uncovered a role for the RNA interference (RNAi) pathway in heterochromatin assembly in the fission yeast Schizosaccharomyces pombe and other eukaryotes. Purification of two RNAi complexes, RITS and RDRC, from fission yeast has provided further insight into the mechanism of RNAi-mediated heterochromatin assembly. These discoveries have given rise to a model in which small interfering RNA molecules act as specificity factors that initiate epigenetic chromatin modifications and double strand RNA synthesis at specific chromosome regions.  相似文献   

13.
The kinetochore, a multi-protein complex assembled on centromeric chromatin in mitosis, is essential for sister chromosome segregation. We show here that inhibition of histone deacetylation blocks mitotic progression at prometaphase in two human tumor cell lines by interfering with kinetochore assembly. Decreased amounts of hBUB1, CENP-F and the motor protein CENP-E were present on kinetochores of treated cells. These kinetochores failed to nucleate and inefficiently captured microtubules, resulting in activation of the mitotic checkpoint. Addition of histone deacetylase inhibitors prior to the end of S-phase resulted in decreased HP1-? on pericentromeric heterochromatin in S-phase and G2, decreased pericentromeric targeting of Aurora B kinase, resulting in decreased pre-mitotic phosphorylation of pericentromeric histone H3(S10) in G2, followed by assembly of deficient kinetochores in M-phase. HP1-?, Aurora B and the affected kinetochore proteins all were present at normal levels in treated cells; thus, effects of the inhibitors on mitotic progression do not seem to reflect changes in gene expression. In vitro kinase activity of Aurora B isolated from treated cells was unaffected. We propose that the increased presence in pericentromeric heterochromatin of histone H3 acetylated at K9 is responsible for the mitotic defects resulting from inhibition of histone deacetylation.  相似文献   

14.
Posttranslational histone modifications and histone variants form a unique epigenetic landscape on mammalian chromosomes where the principal epigenetic heterochromatin markers, trimethylated histone H3(K9) and the histone H2A.Z, are inversely localized in relation to each other. Trimethylated H3(K9) marks pericentromeric constitutive heterochromatin and the male Y chromosome, while H2A.Z is dramatically reduced at these chromosomal locations. Inactivation of a lysosomal and nuclear protease, cathepsin L, causes a global redistribution of epigenetic markers. In cathepsin L knockout cells, the levels of trimethylated H3(K9) decrease dramatically, concomitant with its relocation away from heterochromatin, and H2A.Z becomes enriched at pericentromeric heterochromatin and the Y chromosome. This change is also associated with global relocation of heterochromatin protein HP1 and histone H3 methyltransferase Suv39h1 away from constitutive heterochromatin; however, it does not affect DNA methylation or chromosome segregation, phenotypes commonly associated with impaired histone H3(K9) methylation. Therefore, the key constitutive heterochromatin determinants can dynamically redistribute depending on physiological context but still maintain the essential function(s) of chromosomes. Thus, our data show that cathepsin L stabilizes epigenetic heterochromatin markers on pericentromeric heterochromatin and the Y chromosome through a novel mechanism that does not involve DNA methylation or affect heterochromatin structure and operates on both somatic and sex chromosomes.  相似文献   

15.
16.
17.
18.
Post-translational modifications of histone proteins, the basic building blocks around which eukaryotic DNA is organized, are crucially involved in the regulation of genome activity as they control chromatin structure and dynamics. The recruitment of specific binding proteins that recognize and interact with particular histone modifications is thought to constitute a fundamental mechanism by which histone marks mediate biological function. For instance, tri-methylation of histone H3 lysine 9 (H3K9me3) is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging, and heterochromatin formation. Until now, little was known about the regulation of effector-histone mark interactions, and in particular, of the binding of HP1 to H3K9me3. Recently, we and others presented evidence that a "binary methylation-phosphorylation switch" mechanism controls the dynamic release of HP1 from H3K9me3 during the cell cycle: phosphorylation of histone H3 serine 10 (H3S10ph) occurs at the onset of mitosis, interferes with HP1-H3K9me3 interaction, and therefore, ejects HP1 from its binding site. Here, we discuss the biological function of HP1 release from chromatin during mitosis, consider implications why the cell controls HP1 binding by such a methylation-phosphorylation switching mechanism, and reflect on other cellular pathways where binary switching of HP1 might occur.  相似文献   

19.
20.
Wallace JA  Orr-Weaver TL 《Chromosoma》2005,114(6):389-402
Heterochromatin is composed of tightly condensed chromatin in which the histones are deacetylated and methylated, and specific nonhistone proteins are bound. Additionally, in vertebrates and plants, the DNA within heterochromatin is methylated. As the heterochromatic state is stably inherited, replication of heterochromatin requires not only duplication of the DNA but also a reinstallment of the appropriate protein and DNA modifications. Thus replication of heterochromatin provides a framework for understanding mechanisms of epigenetic inheritance. In recent studies, roles have been identified for replication factors in reinstating heterochromatin, particularly functions for origin recognition complex, proliferating cell nuclear antigen, and chromatin-assembly factor 1 in recruiting the heterochromatin binding protein HP1, a histone methyltransferase, a DNA methyltransferase, and a chromatin remodeling complex. Potential mechanistic links between these factors are discussed. In some cells, replication of the heterochromatin is blocked, and in Drosophila this inhibition is mediated by a chromatin binding protein SuUR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号