首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Paracoccidioides brasiliensis is a dimorphic fungus known to produce invasive systemic disease in humans. The 43-kDa glycoprotein of P. brasiliensis is the major diagnostic antigen of paracoccidioidomycosis and may act as a virulence factor, since it is a receptor for laminin.Very little is known about early interactions between this fungus and the host cells, so we developed in vitro a model system employing cultured mammalian cells (Vero cells), in order to investigate the factors and virulence mechanisms of P.brasiliensis related to the adhesion and invasion process. We found that there is a permanent interaction after 30 min of contact between the fungus and the cells. The yeasts multiply in the cells for between 5 and 24 h. Different strains of P. brasiliensis were compared, and strain 18 (high virulence) was the most strongly adherent, followed by strain 113 (virulent), 265 (considered of low virulence) and 113M (mutant obtained by ultraviolet radiation, deficient in gp43). P. brasiliensis adhered to the epithelial cells by a narrow tube, while depressions were noticed in the cell surface, suggesting an active cavitation process. An inhibition assay was performed and it was verified that anti-gp43 serum and a pool of sera from individuals with paracoccidioidomycosis were able to inhibit the adhesion of P. brasiliensis to the Vero cells. Glycoprotein 43 (gp43) antiserum abolished 85% of the binding activity of P. brasiliensis. This fungus can also invade the Vero cells, and intraepithelial parasitism could be an escape mechanism in paracoccidioidomycosis.  相似文献   

3.
In its attempt to survive, the fungal cell can change the cell wall composition and/or structure in response to environmental stress. The molecules involved in these compensatory mechanisms are a possible target for the development of effective antifungal agents. In the thermodimorphic fungus Paracoccidioides brasiliensis Pb01, the main polymers that compose the cell wall are chitin and glucans. These polymers form a primary barrier that is responsible for the structural integrity and formation of the cell wall. In this study the behaviour of P. brasiliensis was evaluated under incubation with cell wall stressor agents such as Calcofluor White (CFW), Congo Red (CR), Sodium Dodecyl Sulphate (SDS), NaCl, KCl, and Sorbitol. Use of concentrations at which the fungus is visually sensitive to those agents helped to explain some of the adaptive mechanisms used by P. brasiliensis in response to cell wall stress. Our results show that 1,3-β-D-glucan synthase (PbFKS1), glucosamine-6-phosphate synthase (PbGFA1) and β-1,3-glucanosyltransferase (PbGEL3)as well as 1,3-β-D-glucan and N-acetylglucosamine (GlcNAc) residues in the cell wall are involved in compensatory mechanisms against cell wall damage.  相似文献   

4.
5.
The dimorphic pathogenic fungus Paracoccidioides brasiliensis can grow as a prototroph for organic sulfur as a mycelial (non-pathogenic) form, but it is unable to assimilate inorganic sulfur as a yeast (pathogenic) form. Temperature and the inability to assimilate inorganic sulfur are the single conditions known to affect P. brasiliensis mycelium-to-yeast (M-Y) dimorphic transition. For a comprehensive evaluation of genes that have their expression modulated during the M-Y transition in different culture media, we performed a large-scale analysis of gene expression using a microarray hybridization approach. The results of the present work demonstrate the use of microarray hybridization analysis to examine gene expression during the M-Y transition in minimal medium and compare these results with the M-Y transition in complete medium. Our results showed that about 95% of the genes in our microarray are mainly responding to the temperature trigger, independently of the media where the M-Y transition took place. As a preliminary step to understand the inorganic sulfur inability in P. brasiliensis yeast form, we decided to characterize the mRNA accumulation of several genes involved in different aspects of both organic and inorganic sulfur assimilation. Our results suggest that although P. brasiliensis cannot use inorganic sulfur as a single sulfur source to initiate both M-Y transition and Y growth, the fungus can somehow use both organic and inorganic pathways during these growth processes.  相似文献   

6.
7.
8.
The aim of this study was to evaluate genome size and ploidy of the dimorphic pathogenic fungus Paracoccidioides brasiliensis. The cell cycle analysis of 10 P. brasiliensis isolates by flow cytometry (FCM) revealed a genome size ranging from 26.3+/-0.1Mb (26.9+/-0.1fg) to 35.5+/-0.2Mb (36.3+/-0.2fg) per uninucleated yeast cell. The DNA content of conidia from P. brasiliensis ATCC 60855-30.2+/-0.8Mb (30.9+/-0.8fg) -showed no significant differences with the yeast form, possibly excluding the occurrence of ploidy shift during morphogenesis. The ploidy of several P. brasiliensis isolates was assessed by comparing genome sizing by FCM with the previously described average haploid size obtained from electrophoretic karyotyping. The analysis of intra-individual variability of a highly polymorphic P. brasiliensis gene, GP43, indicated that only one allele seems to be present. Overall, the results showed that all analysed isolates presented a haploid, or at least aneuploid, DNA content and no association was detected between genome size/ploidy and the clinical-epidemiological features of the studied isolates. This work provides new knowledge on P. brasiliensis genetics/genomics, important for future research in basic cellular/molecular mechanisms and for the development/design of molecular techniques in this fungus.  相似文献   

9.
Calmodulin (CaM) modulates intracellular calcium signalling and acts on several metabolic pathways and gene expression regulation in many eukaryotic organisms including human fungal pathogens, such as Candida albicans and Histoplasma capsulatum. The temperature-dependent dimorphic fungus Paracoccidioides brasiliensis is the aetiological agent of paracoccidioidomycosis (PCM). The mycelium (M) to yeast (Y) transition has been shown to be essential for establishment of the infection, although the precise molecular mechanisms of dimorphism in P. brasiliensis are still unknown. In this work, several inhibitory drugs of the Ca(2+)/calmodulin signalling pathway were tested to verify the role of this pathway in the cellular differentiation process of P. brasiliensis. EGTA and the drugs calmidazolium (R24571), trifluoperazine (TFP), and W7 were able to inhibit the M-Y transition. We have cloned and characterized the calmodulin gene from P. brasiliensis, which comprises 924 nucleotides and five introns that are in a conserved position among calmodulin genes.  相似文献   

10.
Paracoccidioides brasiliensis is a thermo-dimorphic fungus responsible for paracoccidioidomycosis (PCM), a systemic granulomatous mycosis prevalent in Latin America. The fungus releases many antigens which may be transiently bound to its cell surface. Some of them may show enzymatic functions essential for maintaining many cell processes and survival of the microorganism at different conditions. In this study, we report the characterization of a secreted 75kDa protein from P. brasiliensis with phosphatase activity. Biologic function of the molecule was demonstrated using two specific mAbs produced and characterized as IgM and IgG isotypes. Confocal microscopy and flow cytometry analysis demonstrated that both mAbs recognized the protein on the fungus surface, mainly in its budding sites. In vitro experiments showed that fungal growth was inhibited by blocking the protein with mAbs. In addition, opsonized yeast cells with both mAbs facilitated phagocytosis by murine peritoneal macrophages. Passive immunization using mAbs before P. brasiliensis mice infection reduced colony-forming units (CFU) in the lungs as compared with controls. Histopathology showed smaller inflammation, absence of yeast cells and no granuloma formation.  相似文献   

11.
Paracoccidioides brasiliensis is a thermodimorphic human pathogenic fungus that causes paracoccidioidomycosis (PCM), which is the most prevalent systemic mycosis in Latin America. Differentiation from the mycelial to the yeast form (M-to-Y) is an essential step for the establishment of PCM. We evaluated the involvement of mitochondria and intracellular oxidative stress in M-to-Y differentiation. M-to-Y transition was delayed by the inhibition of mitochondrial complexes III and IV or alternative oxidase (AOX) and was blocked by the association of AOX with complex III or IV inhibitors. The expression of P. brasiliensis aox (Pbaox) was developmentally regulated through M-to-Y differentiation, wherein the highest levels were achieved in the first 24 h and during the yeast exponential growth phase; Pbaox was upregulated by oxidative stress. Pbaox was cloned, and its heterologous expression conferred cyanide-resistant respiration in Saccharomyces cerevisiae and Escherichia coli and reduced oxidative stress in S. cerevisiae cells. These results reinforce the role of PbAOX in intracellular redox balancing and demonstrate its involvement, as well as that of other components of the mitochondrial respiratory chain complexes, in the early stages of the M-to-Y differentiation of P. brasiliensis.  相似文献   

12.
Membrane rafts are cholesterol- and sphingolipid-enriched cell membrane domains, which are ubiquitous in mammals and play an essential role in different cellular functions, including host cell-pathogen interaction. In this work, by using several approaches, we demonstrated the involvement of epithelial cell membrane rafts in adhesion process of the pathogenic fungus Paracoccidioides brasiliensis. This conclusion was supported by the localization of ganglioside GM1, a membrane raft marker, at P. brasiliensis-epithelial cell contact sites, and by the inhibition of this fungus adhesion to host cells pre-treated with cholesterol-extractor (methyl-beta-cyclodextrin, MbetaCD) or -binding (nystatin) agents. In addition, at a very early stage of P. brasiliensis-A549 cell interaction, this fungus promoted activation of Src-family kinases (SFKs) and extracellular signal-regulated kinase 1/2 (ERK1/2) of these epithelial cells. Whereas SFKs were partially responsible for activation of ERK1/2, membrane raft disruption with MbetaCD in A549 cells led to total inhibition of SFK activation. Taking together, these data indicate for the first time that epithelial cell membrane rafts are essential for P. brasiliensis adhesion and activation of cell signaling molecules.  相似文献   

13.
Paracoccidioides brasiliensis causes one of the most prevalent systemic mycoses in Latin America--paracoccidioidomycosis. It is a dimorphic fungus that undergoes a complex transformation in vivo, with mycelia in the environment producing conidia, which probably act as infectious propagules upon inhalation into the lungs, where they transform to the pathogenic yeast form. This transition is readily induced in vitro by temperature changes, resulting in modulation of the composition of the cell wall. Notably, the polymer linkages change from beta-glucan to alpha-glucan, possibly to avoid beta-glucan triggering the inflammatory response. Mammalian oestrogens inhibit this transition, giving rise to a higher incidence of disease in males. Furthermore, the susceptibility of individuals to paracoccidioidomycosis has a genetic basis, which results in a depressed cellular immune response in susceptible patients; resistance is conferred by cytokine-stimulated granuloma formation and nitric oxide production. The latency period and persistence of the disease and the apparent lack of efficacy of humoral immunity are consistent with P. brasiliensis existing as a facultative intracellular pathogen.  相似文献   

14.
15.
Paracoccidioides brasiliensis, the etiologic agent of paracoccidioidomycosis, is a dimorphic fungus which is found as mycelia (M) at 26 degrees C and as yeasts (Y) at 37 degrees C, or after the invasion of host tissues. Although the dimorphic transition in P. brasiliensis and other dimorphic fungi is an essential step in the establishment of infection, the molecular events regulating this process are yet poorly understood. Since the differential gene expression is a well-known mechanism which plays a central role in the dimorphic transition as well as in other biological process, in this work we describe the identification and characterization of two differentially expressed P. brasiliensis hydrophobin cDNAs (Pbhyd1 and Pbhyd2). Hydrophobins are small hydrophobic proteins related to a variety of important functions in fungal biology, including cell growth, development, infection, and virulence. These two hydrophobin genes are present as single copy in P. brasiliensis genome and Northern blot analysis revealed that both mRNAs are mycelium-specific and highly accumulated during the first 24 h of M to Y transition.  相似文献   

16.
Paracoccidioides brasiliensis is a pathogenic, dimorphic fungus that causes paracoccidioidomycosis, a systemic human mycosis that is highly prevalent in Latin America. In this study, we demonstrated that P. brasiliensis yeasts induced interleukin (IL)-8 and IL-6 secretion by human lung epithelial A549 cells. However, tumor necrosis factor-α and interferon-γ were undetectable in these cultures. Moreover, P. brasiliensis yeasts induced activation of p38 mitogen-activated protein kinase (MAPK), c-Jun NH(2)-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) 1/2 in A549 cells, and IL-8 and IL-6 secretion promoted by this fungus was dependent on activation of p38 MAPK and ERK 1/2. In addition, IL-8 and IL-6 levels were significantly higher in culture supernatants of A549 cells that were incubated with formaldehyde-fixed P. brasiliensis compared to cultures of cells that were infected with live yeasts. Our results indicate that the observed cytokine level differences were due to protease expression, in live yeasts, that degraded these cytokines. Degradation of human recombinant IL-8 and IL-6 by live P. brasiliensis was inhibited by AEBSF and aprotinin, suggesting that these proteases belong to a family of serine proteases. This is the first report showing that P. brasiliensis may modulate host inflammation by expressing proteases that degrade proinflammatory cytokines.  相似文献   

17.
Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis, a disease confined to Latin America and of marked importance in the endemic areas due to its frequency and severity. This species is considered to be clonal according to mycological criteria and has been shown to vary in virulence. To characterize natural genetic variation and reproductive mode in this fungus, we analyzed P. brasiliensis phylogenetically in search of cryptic species and possible recombination using concordance and nondiscordance of gene genealogies with respect to phylogenies of eight regions in five nuclear loci. Our data indicate that this fungus consists of at least three distinct, previously unrecognized species: S1 (species 1 with 38 isolates), PS2 (phylogenetic species 2 with six isolates), and PS3 (phylogenetic species 3 with 21 isolates). Genealogies of four of the regions studied strongly supported the PS2 clade, composed of five Brazilian and one Venezuelan isolate. The second clade, PS3, composed solely of 21 Colombian isolates, was strongly supported by the alpha-tubulin genealogy. The remaining 38 individuals formed S1. Two of the three lineages of P. brasiliensis, S1 and PS2, are sympatric across their range, suggesting barriers to gene flow other than geographic isolation. Our study provides the first evidence for possible sexual reproduction in P. brasiliensis S1, but does not rule it out in the other two species.  相似文献   

18.
Multinucleated giant cells (MGC) are characteristic cells in granulomatous disorders such as paracoccidioidomycosis (PCM) and also are formed in vitro from peripheral blood mononuclear cells by several stimuli. In this study, the authors investigated in vitro formation of MGC derived from monocytes of healthy individuals, stimulated with Paracoccidioides brasiliensis antigen (PbAg), compared with other stimuli such as IFN-gamma and supernatant of Con-A-stimulated peripheral blood mononuclear cells (CM-ConA). Besides, the fungicidal activity of monocytes and monocyte-derived MGC challenged with P. brasiliensis were compared, at a ratio of one fungus per 50 monocytes. Results demonstrated that PbAg, IFN-gamma, and CM-ConA stimuli were able to induce MGC generation, with fusion indices significantly higher than control cultures. Striking results were observed when MGC induced by PbAg and IFN-gamma presented higher fungicidal activity than monocytes, submitted to the same stimuli, showing a better capacity of these cells to kill P. brasiliensis. In summary, the results suggest that PbAg is able to induce MGC generation, and these cells presented higher fungicidal activity against P. brasiliensis than monocytes.  相似文献   

19.
Paracoccidioidomycosis, a deep mycosis endemic in Latin America, is a chronic granulomatous disease caused by the fungus Paracoccidioides brasiliensis. Phagocytic cells play a critical role against this fungus, and several studies have shown the effects of activator and suppressive cytokines on macrophage and monocyte functions. However, studies on polymorphonuclear neutrophils (PMNs), that are the first cells recruited to the infection sites, are scarcer. Thus, the objective of this paper was to assess whether interleukin-10 (IL-10), a potent anti-inflammatory cytokine, is able to block the activity of IFN-gamma-activated human PMNs upon P. brasiliensis intracellular killing, in vitro. The results showed that IFN-gamma-activated PMNs have an effective fungicidal activity against the fungus. This activity was associated with the release of high levels of H(2)O(2), the metabolite involved in phagocytic cells antifungal activities. However, the concomitant incubation of these cells with IFN-gamma and IL-10 significantly blocked IFN-gamma activation. As a consequence, PMNs killing activity and H(2)O(2) release were inhibited. Together, our results show the importance of PMNs exposure to activator or suppressor cytokines in the early stages of paracoccidioidomycosis infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号