首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When the nerves of isolated frog sartorius muscles were stimulated at 10 Hz, synaptic vesicles in the motor nerve terminals became transiently depleted. This depletion apparently resulted from a redistribution rather than disappearance of synaptic vesicle membrane, since the total amount of membrane comprising these nerve terminals remained constant during stimulation. At 1 min of stimulation, the 30% depletion in synaptic vesicle membrane was nearly balanced by an increase in plasma membrane, suggesting that vesicle membrane rapidly moved to the surface as it might if vesicles released their content of transmitter by exocytosis. After 15 min of stimulation, the 60% depletion of synaptic vesicle membrane was largely balanced by the appearance of numerous irregular membrane-walled cisternae inside the terminals, suggesting that vesicle membrane was retrieved from the surface as cisternae. When muscles were rested after 15 min of stimulation, cisternae disappeared and synaptic vesicles reappeared, suggesting that cisternae divided to form new synaptic vesicles so that the original vesicle membrane was now recycled into new synaptic vesicles. When muscles were soaked in horseradish peroxidase (HRP), this tracerfirst entered the cisternae which formed during stimulation and then entered a large proportion of the synaptic vesicles which reappeared during rest, strengthening the idea that synaptic vesicle membrane added to the surface was retrieved as cisternae which subsequently divided to form new vesicles. When muscles containing HRP in synaptic vesicles were washed to remove extracellular HRP and restimulated, HRP disappeared from vesicles without appearing in the new cisternae formed during the second stimulation, confirming that a one-way recycling of synaptic membrane, from the surface through cisternae to new vesicles, was occurring. Coated vesicles apparently represented the actual mechanism for retrieval of synaptic vesicle membrane from the plasma membrane, because during nerve stimulation they proliferated at regions of the nerve terminals covered by Schwann processes, took up peroxidase, and appeared in various stages of coalescence with cisternae. In contrast, synaptic vesicles did not appear to return directly from the surface to form cisternae, and cisternae themselves never appeared directly connected to the surface. Thus, during stimulation the intracellular compartments of this synapse change shape and take up extracellular protein in a manner which indicates that synaptic vesicle membrane added to the surface during exocytosis is retrieved by coated vesicles and recycled into new synaptic vesicles by way of intermediate cisternae.  相似文献   

2.
During ontogenetic development in the definitive host, the cerebral ganglia of the parasitic flatworm Fasciola hepatica lose their cell rind integrity and develop specialized nerve processes. The organization and cytological features of the central nervous system were examined during three developmental stages in the parasitic life cycle of F. hepatica to determine when the changes occur. The cerebral ganglion cell bodies of migrating juvenile worms (5 days post-infection) are organized into a one-cell-thick rind that surrounds a central neuropile composed of small unmyelinated nerve processes (less than 3 microns in diameter). In young, sexually-immature adult worms (30 days post-infection), the cell bodies of the ganglia are no longer organized into a complete or tight cell rind around the ganglia. In addition, large diameter ('giant') unmyelinated nerve processes (greater than 12 microns) are found in the neuropile area. These giant nerve processes are also found in the transverse commissure and the longitudinal nerve cords. In mature adult worms (4-6 months post-infection), the rind of nerve cell bodies has completely disappeared and cell bodies are scattered around and within the neuropile. More than half of the volume of the mature adult neuropile is composed of giant nerve processes. The three developmental stages of the parasite that were used in this study differ significantly in their sizes, behaviours and microhabitat locations in the host. The results suggest that the organizational and morphological changes in the ganglia reflect selective adaptations to changes in the parasitic microenvironment.  相似文献   

3.
Neurosecretory (Nsy) cells within the cerebral ganglion of Lumbricus terrestris were classified ultrastructurally. The Nsy cells within the subesophageal ganglion, nerve cord ganglion, and the peripheral nervous system were also examined. A comparative survey of Nsy cells of four other species of oligochaetes, Eisenia feotida, octolasion cyaneum, Dendrobeona subrubicunda, and Allolophora longa, was also carried out. Seven cell types (A1, A2, A3, A4, A5, C, and SEF), distinguished by special cytological and ultrastructural features, were found within the cerebral ganglion. Distribution of these cells inside and outside the cerebral ganglion was studied in detail by light and electron microscopy. The nerve terminals of each cell type were followed into the neuropile region. Exocytosis from cell bodies appears to be the main release mechanism for the Nsy granules, whereas small Nsy vesicles are released through synapses in the neuropile. Peripheral fibers of some cell types (A1, A2, and A3) extend through the capsule to the pericapsular epithelium. It is possible that Nsy cells secrete hormones from their cell bodies and peripheral processes and that their centrally directed axons release modulators/transmitters within the neuropile.  相似文献   

4.
The localization of cyclic 3', 5'-AMP phosphodiesterase was studied by ultrastructural cytochemical methods in the various tissues of Locusta migratoria. Large amounts of electron dense, granular reaction products were detectable on the surface of the corpora allata and the corpus cardiacum, bound to the basal lamina. In the protocerebral neuropile rather large amounts of reaction products were observed in the processes of the glial cells. A significant number of lead phosphate deposit was found to occur on the membrane of certain large axons, the microtubules of the axons, furthermore on the membrane of several terminals. Reaction product was also observable in certain terminals, bound to the synaptic vesicles and the mitochondria. At the same time, electron dense deposits were not detectable at all on the surface of cerebral neurons. In the case of myocardium, reaction product was only found on the basal lamina and the extracellular surface of the sarcolemma. On the basis of our results it can be stated that the cyclic 3', 5'-AMP phosphodiesterase is detectable by cytochemical methods in different tissues of Locusta migratoria and presumably it fulfils the task of the extracellular cAMP level regulation.  相似文献   

5.
In addition to demonstrating synaptic vesicles, staining with the zinc-iodide-osmium tetroxide (ZIO) method reveals the presence of positively reacting GERL membranes in association with the Golgi complex and lysosomes in the nerve cell bodies within ganglia from the locust Schistocerca gregaria and the gastropod molluscs, Limnaea stagnalis and Helix aspersa. A positive response to ZIO occurs in certain Golgi vesicles and saccules, in GERL (Golgi-endoplasmic-reticulum-lysosomes), in multivesicular bodies as well as residual bodies and in small vesicles and cisternae of axonal smooth endoplasmic reticllum (ER). The interrelationships between these organelles are considered in view of the similarity of the ZIO localization to phosphatase-rich sites in the neuronal perikarya and with respect to the possibility that components of the synaptic vesicles are formed in the Golgi region of the cell and migrate via the axonal smooth ER to the synaptic regions.  相似文献   

6.
Calmodulin, a multifunctional Ca(++)-binding protein, is present in all eucaryotic cells. We have investigated the distribution of this protein in the rat cerebellum by immunoelectron microscopy using a Fab-peroxidase conjugate technique. In Purkinje and granular cell bodies, calmodulin reaction product was found localized both on free ribosomes and on those attached to rough endoplasmic reticulum (RER) and the nuclear envelope. No calmoduline was observed in the cisternae of RER or the Golgi apparactus. Calmodulin did not appear to be concentrated in the soluble fraction of the cell under the conditions used. Rather, peroxidase reaction product could be seen associated with membranes of the Golgi apparatus the smooth endoplasmic reticulum (SER), and the plasma membrane of both cell bodies and neuronal processes. In the neuronal dendrites, calmodulin appeared to be concentrated on membranes of the SER, small vesicles, and mitochondria. Also, granular calmodulin was observed in the amorphous material. In the synaptic junction, a large amount of calmodulin was seen attached to the inner surface of the postsynaptic membrane, whereas very little was observed in the presynaptic membrane or vesicles. These observations suggest that calmodulin is synthesized on ribosomes and discharged into the cytosol, and that it then becomes associated with a variety of intracellular membranes. Calmodulin also seems to be transported via neuronal processes to the postsynaptic membrane. Calmodulin localization at the postsynaptic membrane suggests that this protein may mediate calcium effects at the synaptic junction and, thus, may play a role in the regulation of neurotransmission.  相似文献   

7.
Fine structure of the chemoreceptor sensillum in Limulus   总被引:1,自引:0,他引:1  
Each chemoreceptor sensillum of Limulus polyphemus consists of 6–15 bipolar neurosensory cells with distal processes confined within a single cuticular tubule as they extend to the outside environment. The cuticular tubule, which is enveloped by the cuticulo-tubal cell, opens proximally into a fluid-filled extracellular space through which the dendrite passes before entering the cuticular tubule. Between the neurosensory cells are one to three microvillar cells also exposed to the extracellular space. This space is enclosed by a sheath cell extending proximally from the inner opening of the cuticular tubule and enveloping the proximal portions of the dendrites, the distal portions of the microvillar cells, as well as the distal portion of some neurosensory cell bodies. Most of the remaining portions of the neurosensory cells and microvillar cells are enveloped by neuroglia. Tight junctions occur between the distal portions of the dendrites in or near the cuticular tubule. Each dendrite has a cilium-like segment located where it traverses the extracellular space with a 9 + 0 pattern of fibers. Septuplelayered junctions occur among the proximal portions of some dendrites and some neurosensory cell bodies of the same sensillum. The subjacent processes of the sensillum frequently course proximally as isolated axons before joining nerve bundles. In the chilarial and gnathobasal chemoreceptors these nerve bundles course proximally to neuropile clumps of a peripheral nerve plexus. The presence of numerous synaptic vesicles in the neuropiles suggests that chemical transmission may occur among “en passant” synapses formed by the axons. Proximally the neuropiles are joined to the central nervous system by relatively long nerves.  相似文献   

8.
Electron micrographs are presented of synaptic regions encountered in sections of frog sympathetic ganglia and earthworm nerve cord neuropile. Pre- and postsynaptic neuronal elements each appear to have a membrane 70 to 100 A thick, separated from each other over the synaptic area by an intermembranal space 100 to 150 A across. A granular or vesicular component, here designated the synaptic vesicles, is encountered on the presynaptic side of the synapse and consists of numerous oval or spherical bodies 200 to 500 A in diameter, with dense circumferences and lighter centers. Synaptic vesicles are encountered in close relationship to the synaptic membrane. In the earthworm neuropile elongated vesicles are found extending through perforations or gaps in the presynaptic membrane, with portions of vesicles appearing in the intermembranal space. Mitochondria are encountered in the vicinity of the synapse, and in the frog, a submicroscopic filamentary component can be seen in the presynaptic member extending up to the region where the vesicles are found, but terminating short of the synapse itself.  相似文献   

9.
Electron micrographs are presented of synaptic regions encountered in sections of frog sympathetic ganglia and earthworm nerve cord neuropile. Pre- and postsynaptic neuronal elements each appear to have a membrane 70 to 100 A thick, separated from each other over the synaptic area by an intermembranal space 100 to 150 A across. A granular or vesicular component, here designated the synaptic vesicles, is encountered on the presynaptic side of the synapse and consists of numerous oval or spherical bodies 200 to 500 A in diameter, with dense circumferences and lighter centers. Synaptic vesicles are encountered in close relationship to the synaptic membrane. In the earthworm neuropile elongated vesicles are found extending through perforations or gaps in the presynaptic membrane, with portions of vesicles appearing in the intermembranal space. Mitochondria are encountered in the vicinity of the synapse, and in the frog, a submicroscopic filamentary component can be seen in the presynaptic member extending up to the region where the vesicles are found, but terminating short of the synapse itself.  相似文献   

10.
Electron microscopic demonstration of cholinesterases in nervous tissue   总被引:1,自引:0,他引:1  
Summary Acetylcholinesterase was demonstrated at ultrastructural level in the motor nerve cells of rat's spinal cord using the Karnovsky-Roots modification of Koelle's thiocholine method. Selective inhibitors were employed to check the validity of the reaction.Prolonged formaldehyde fixation improved the poor penetration of the reactive agents and diminished the relatively large crystal size of the end product, which were the two main difficulties of the method. The preservation of ultrastructure was highly improved, when thin sections were made without freezing using a tissue chopper.Acetylcholinesterase was localized in the nuclear envelope, in the rough-surfaced endoplasmic reticulum, in medium-sized vesicles of the Golgi apparatus, and around synaptic terminals. Synaptic vesicles were found negative.  相似文献   

11.
A method for the ultrastructural localization of acyltransferase enzymes involved in phospholipid metabolism has been applied to the developing rat trigeminal nerve. Determination of acyltransferase levels in the nerve indicated that a peak of activity occurs at the 8th day after birth with gradual declines of activity up to 15 days. Morphological surveys and determinations of cholesterol levels suggested that heavy myelin formation occurs in the nerve during this latter period. Fixed nerves incubated in a medium for localization of acyltransferases indicated deposition of reaction product associated with Golgi cisternae, intracellular smooth vesicles, and the plasma membrane of the Schwann cell in the incipient stages of myelin formation. Golgi-derived vesicles appeared to move toward the Schwann cell surface and fuse with the plasma membrane. Activity continued to be detectable in the plasma membrane of the internal mesaxon as long as cytoplasm was evident and mature myelin membrane was not yet formed. Cells in which myelin formation appeared advanced showed little or no enzyme marker. Consistent with cytochemical observations were biochemical determinations of acyltransferases which showed high levels of the enzymes in microsomes, while no activity could be detected in the myelin fraction. Acyltransferase reaction product was also observed in the Golgi apparatus of ganglion cell bodies, axoplasmic smooth vesicles, and the axolemma. Localization of acyltransferase enzymes in Schwann cells, ganglion cell bodies, and axons during development of the nerve is discussed in relation to membrane biogenesis in the nervous system.  相似文献   

12.
Katada  Eiichi  Ojika  Kosei  Mitake  Shigehisa  Ueda  Ryuzo 《Brain Cell Biology》2000,29(3):199-207
A novel peptide, hippocampal cholinergic neurostimulating peptide (HCNP), originally purified from young rat hippocampus, affects the development of specific cholinergic neurons of the central nervous system in vitro. In this study, HCNP-like-immunoreactive nerve processes and nerve cell bodies were identified by electron microscopic immunocytochemistry in the rat small intestine. Labeled nerve processes were numerous in the circular muscle layer and around the submucosal blood vessels. In the submucosal and myenteric plexuses, some HCNP-like-immunopositive nerve cell bodies and nerve fibers were present. The reaction product was deposited on the membranes of various subcellular organelles, including the rough endoplasmic reticulum, Golgi saccules, ovoid electron-lucent synaptic vesicles in axon terminals associated with submucosal and myenteric plexuses, and the outer membranes of a few mitochondria. The synaptic vesicles of HCNP-like-positive terminals were 60–85 nm in diameter. The present data provide direct immunocytochemical evidence that HCNP-like-positive nerve cell bodies and nerve fibers are present in the submucosal and myenteric plexuses of the rat small intestine. An immunohistochemical light microscopic study using mirror-image sections revealed that in both the submucosal and myenteric ganglia, almost all choline acetyltransferase (ChAT)-immunoreactive neurons were also immunoreactive for HCNP. These observations suggest (i) that HCNP proper and/or HCNP precursor protein is a membrane-associated protein with a widespread subcellular distribution, (ii) that HCNP precursor protein may be biosynthesized within neurons localized in the rat enteric nervous system, and (iii) that HCNP proper and/or HCNP precursor protein are probably stored in axon terminals.  相似文献   

13.
Summary We investigated the distribution of vasoactive intestinal polypeptide (VIP)-like immunoreactive cell bodies in relation to the major cerebral and internal carotid arteries at the skull base in rats. Acetylcholinesterase (AChE) histochemistry was also applied to investigate the localization of this enzyme. VIP staining revealed a few positive cell bodies in nerves close to the internal carotid artery at the base of the skull as well as in the cerebral arterial wall. Ganglion-like cell bodies were detectable within the greater superficial petrosal (GSP) nerve. AChE activity was observed in VIP-like immunoreactive cell bodies along the whole of the GSP nerve. These cell bodies in the GSP nerve may give rise to at least some of the perivascular VIP-and AChE-containing nerves of the internal carotid arteries at the base of the skull.  相似文献   

14.
H Hara  S Kobayashi 《Histochemistry》1987,87(3):217-221
We investigated the distribution of vasoactive intestinal polypeptide (VIP)-like immunoreactive cell bodies in relation to the major cerebral and internal carotid arteries at the skull base in rats. Acetylcholinesterase (AChE) histochemistry was also applied to investigate the localization of this enzyme. VIP staining revealed a few positive cell bodies in nerves close to the internal carotid artery at the base of the skull as well as in the cerebral arterial wall. Ganglion-like cell bodies were detectable within the greater superficial petrosal (GSP) nerve. AChE activity was observed in VIP-like immunoreactive cell bodies along the whole of the GSP nerve. These cell bodies in the GSP nerve may give rise to at least some of the perivascular VIP- and AChE-containing nerves of the internal carotid arteries at the base of the skull.  相似文献   

15.
Light and electron microscopic techniques show that the eye of the marine prosobranch gastropod, Ilyanassa obsoleta, is composed of an optic cavity, lens, cornea, retina, and neuropile, and is surrounded by a connective tissue capsule. The adult retina is a columnar epithelium containing three morphologically distinct cell types: photoreceptor, pigmented, and ciliated cells. The retina is continuous anteriorly with a cuboidal corneal epithelium. The neuropile, located immediately behind the retina, is composed of photoreceptor cell axons, accessory neurons, and their neurites. The embryonic eye is formed from surface ectoderm, which sinks inward as a pigmented cellular mass. At this time, the eye primordium already contains presumptive photoreceptor cells, pigmented retinal cells, and corneal cells. Several days later, just before hatching, the embryonic eye remains in intimate contact with the cerebral ganglion. It has no ciliated retinal cells, neuropile, optic nerve, or connective tissue capsule and its photoreceptor cells lack the electron-lucent vesicles and multivesicular bodies of adult photoreceptor cells. As the eye and the cerebral ganglion grow apart, the optic nerve, neuropile, and connective tissue capsule develop.  相似文献   

16.
The fine structural characteristics of ZIO reaction was studied in the cerebral and cerebellar cortex and olfactory bulb of the rat and in synaptosomes prepared from rat cerebellar cortex. It was concluded that: 1. Organelles of different nerve cell types exhibit different ZIO reactions provided that the impregnation was carried out under standardized conditions. 2. 6...10 times more synaptic vesicles were stained by ZIO in the inhibitory terminals than in the excitatory ones. 3. ZIO positivity was found in all types of synaptosomes prepared from cerebral cortex. Following electrical or chemical (KCl) depolarization there was a decrease in the number of ZIO positive synaptic vesicles, which decrease was directly proportional to the parameters of stimulation. 4. By x-ray microanalysis Os, Zn and Ca were consistently detected in the ZIO precipitates. Iodine, however, could not always be found. After stimulation the presence of Ca was observed even in those synaptosomes in which the ZIO reaction product was absent. 5. On the basis of the staining characteristics the reaction, under standard conditions, can reflect certain functional states of the nerve terminals.  相似文献   

17.
Summary An ultrastructural study was made of the neurons, satellite cells and vesiculated axons of the intestinal nerve of the domestic fowl. Broad membrane-to-membrane contacts between adjacent nerve cell bodies were sometimes observed. The cell bodies and processes were not always separated from the extracellular space by a capsule of satellite cells. Following fixation using potassium permanganate, catecholamine (CA)-containing neurons in the intestinal nerve, unlike those in the lumbar parasympathetic ganglia, did not possess any small granular vesicles (SGV). Following exposure to noradrenaline, SGV could be demonstrated in the cell bodies of the juxta-ileal ganglia but not the juxta-rectal ganglia of the intestinal nerve. Non-CA axons were examined in tissue from birds that had been pretreated with 6-hydroxydopamine. Approximately one half of the non-CA axons formed axo-somatic contacts. Most of the non-CA axons contained varying proportions of small clear vesicles, large clear vesicles and large granular vescles. Statistical analysis showed that the non-CA axons could not be subdivided according to their vesicle content. CA-axons contained many SGV and were found in close apposition to neuronal somata and processes, and in the neuropil.  相似文献   

18.
The distribution of acetylcholinesterase (ACHE) was studied in the granule-containing cells which constitute the glomus-like bodies found near the origin of the great vessels in pre- and postnatal rabbits. Karnovsky's method for localization of ACHE at the electron-microscope level was used and suitable controls were carried out. In the granule-containing cells, ACHE reaction product was evident in the perinuclear cisternae and cisternae of the rough endoplasmic reticulum as well as at the cell membrane. ACHE activity was also localized at the axolemma of unmyelinated axons found near the granule-containing cells and around afferent synaptic terminals to these cells. Possible functions of ACHE associated with the monoamine-storing granule-containing cells are presented.  相似文献   

19.
内质网及其标志酶在离体培养脊髓神经元中的发育变化   总被引:2,自引:1,他引:1  
In an attempt to elucidate the relationship between synapse formation and cell development, the morphology and cytochemistry of the endoplasmic reticulum and its enzymic marker, glucose-6-phosphatase (G-6-Pase), in cultured mouse spinal neurons were investigated ultrastructurally. It was found that in the early period of the development, neurons were characterized by scarceness of organelles; only a few of granular or agranular endoplasmic reticulum and mitochondria were seen. The endoplasmic reticulum and nuclear envelope were packed specifically with G-6-Pase resection product but the product was weak. After a period of culture, most of the neurons had well-developed endoplasmic reticulum, Golgi apparatus, mitochondria and microtubules, etc. The Golgi apparatus was relatively large, having some cisternae associated with vesicles. Either concave of convex face of the saccules was labeled by thiamine pyrophosphatase (TPPase) specifically. GERL, labeled by cytidine monophosphatase (CMPase), was also seen close to the inner or outer face of some Golgi apparatus. The endoplasmic reticulum at this stage was distributed throughout the cytoplasm, including that in dendrites; its enzyme marker (G-6-Pase) localized consistently within the lumen of all endoplasmic reticulum, nuclear space and subsurface cisternae, and frequently in the concave saccules of the Golgi apparatus. After a long-term culture, some neurons became "aged". The endoplasmic reticulum cisternae enlarged and G-6-Pase reaction reduced. Along with the neuronal development, especially maturation of the endoplasmic reticulum and its enzymic marker, synapse formation was begun at the neuropile area. The axo-dendritic synapses always occurred between the axonal terminals and dendrites where the endoplasmic reticulum had showed positive G-6-Pase reactions. Considering the fact, it suggests that the appearance and change of these specific enzymes may be related to the maturation of the neurons in vitro, and also related to the synapse formation between neurons.  相似文献   

20.
We investigated the morphology of the central nervous system throughout the larval development ofCarcinus maenas. For that purpose single larvae were reared in the laboratory from hatching through metamorphosis. Complete series of whole mout semithin sections were obtained from individuals of all successive larval stages and analysed with a light microscope. Morphological feature and spatial arrangement of discernable neural cell clusters, fibre tracts and neuropile are described and compared with the adult pattern. We found that most of the morphological features characterizing the adult nervous system are already present in the zoea-1. Nevertheless, there are marked differences with respect to the arrangement of nerve cell bodies, organization of cerebral neuropile, and disposition of ganglia in the ventral nerve cord. It appears that complexity of the central nervous neuropile is selectively altered during postmetamorphotic development, probably reflecting adaptive changes of sensory-motor integration in response to behavioural maturation. In contrast, during larval development there was little change in the overall structural organization of the central nervous system despite some considerable growth. However, the transition from zoea-4 to megalopa brings about multiple fundamental changes in larval morphology and behavioural pattern. Since central nervous integration should properly adapt to the altered behavioural repertoire of the megalopa, it seems necessary to ask in which respect synaptic rearrangement might characterize development of the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号