首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 693 毫秒
1.
Rotational-echo double resonance (REDOR) is a solid-state NMR technique that has the capability of providing intra- and intermolecular distance and orientational restraints in non-crystallizable, poorly soluble heterogeneous molecular systems such as cell membranes and cell walls. In this review, we will present two applications of REDOR: the investigation of a magainin-related antimicrobial peptide in lipid bilayers and the study of a vancomycin-like glycopeptide in the cell walls of Staphylococcus aureus.  相似文献   

2.
Kim SJ  Matsuoka S  Patti GJ  Schaefer J 《Biochemistry》2008,47(12):3822-3831
Des-N-methylleucyl-4-(4-fluorophenyl)benzyl-vancomycin (DFPBV) retains activity against vancomycin-resistant pathogens despite its damaged d-Ala-d-Ala binding cleft. Using solid-state nuclear magnetic resonance (NMR), a DFPBV binding site in the cell walls of whole cells of Staphylococcus aureus has been identified. The cell walls were labeled with d-[1-(13)C]alanine, [1-(13)C]glycine, and l-[epsilon-(15)N]lysine. Internuclear distances from (19)F of the DFPBV to the (13)C and (15)N labels of the cell-wall peptidoglycan were determined by rotational-echo double-resonance (REDOR) NMR. The (13)C{(19)F} and (15)N{(19)F} REDOR spectra show that, in situ, DFPBV binds to the peptidoglycan as a monomer with its vancosamine hydrophobic side chain positioned near a pentaglycyl bridge. This result suggests that the antimicrobial activity of other vancosamine-modified glycopeptides depends upon both d-Ala-d-Ala stem-terminus recognition (primary binding site) and stem-bridge recognition (secondary binding site).  相似文献   

3.
Solid-state NMR experiments with stable isotope-labeled Staphylococcus aureus have provided insight into the structure of the peptidoglycan binding site of a potent fluorobiphenyl derivative of chloroeremomycin (Eli Lilly LY329332). Rotational-echo double resonance (REDOR) NMR provided internuclear distances from the 19F of this glycopeptide antibiotic to natural-abundance 31P and to specific 13C and 15N labels biosynthetically incorporated into the bacteria from labeled alanine, glycine, or lysine in the growth medium. Results from experiments with intact late log phase bacteria and cell walls indicated homogeneous drug-peptidoglycan binding. Drug dimers were not detected in situ, and the hydrophobic fluorobiphenyl group of LY329332 did not insert into the bilayer membrane. A model of the binding site consistent with the REDOR results positions the vancomycin cleft around an un-cross-linked D-Ala-D-Ala peptide stem with the fluorobiphenyl moiety of the antibiotic near the base of a second, proximate stem in a locally ordered peptidoglycan matrix.  相似文献   

4.
Solid-state NMR has been used to examine isolated cell walls and intact whole cells of Staphylococcus aureus complexed to five different vancomycin, eremomycin, and chloroeremomycin derivatives. The cell walls and whole cells were specifically labeled with d-[1-(13)C]alanine, or a combination of [1-(13)C]glycine and [epsilon-(15)N]lysine. Each of the bound glycopeptides had a (19)F-labeled substituent at either its C-terminus or its disaccharide position. The (13)C{(19)F} rotational-echo double-resonance (REDOR) dephasing for the cell-wall (13)C-labeled bridging pentaglycyl segment connecting a glycopeptide-complexed peptidoglycan stem with its neighboring stem indicates that the fluorine labels for all bound glycopeptides are positioned at one or the other end of the bridge. An exception is N'-(p-trifluoromethoxybenzyl)chloroeremomycin, whose hydrophobic substituent differs in length by one phenyl group compared to that of oritavancin, N'-4-[(4-chlorophenyl)benzyl)]chloroeremomycin. For this drug, the fluorine label is near the middle of the pentaglycyl segment. (15)N{(19)F} REDOR dephasing shows the proximity of the fluorine to the bridge-link site of the pentaglycyl bridge for C-terminus-substituted moieties and the cross-link site for disaccharide-substituted moieties. Full-echo REDOR spectra of cell-wall complexes from cells labeled by d-[1-(13)C]alanine (in the presence of an alanine racemase inhibitor) reveal three different carbonyl carbon chemical-shift environments, arising from the d-Ala-d-Ala binding site and the d-Ala-Gly-1 cross-link site. The REDOR results indicate a single fluorine dephasing center in each peptidoglycan complex. Molecular models of the mature cell-wall complexes that are consistent with internuclear distances obtained from (13)C{(19)F} and (15)N{(19)F} REDOR dephasing allow a correlation of structure and antimicrobial activity of the glycopeptides.  相似文献   

5.
Staphylococcus aureus biofilms pose a serious clinical threat as reservoirs for persistent infections. Despite this clinical significance, the composition and mechanism of formation of S. aureus biofilms are unknown. To address these problems, we used solid-state NMR to examine S. aureus (SA113), a strong biofilm-forming strain. We labeled whole cells and cell walls of planktonic cells, young biofilms formed for 12–24 h after stationary phase, and more mature biofilms formed for up to 60 h after stationary phase. All samples were labeled either by (i) [15N]glycine and l-[1-13C]threonine, or in separate experiments, by (ii) l-[2-13C,15N]leucine. We then measured 13C-15N direct bonds by C{N} rotational-echo double resonance (REDOR). The increase in peptidoglycan stems that have bridges connected to a surface protein was determined directly by a cell-wall double difference (biofilm REDOR difference minus planktonic REDOR difference). This procedure eliminates errors arising from differences in 15N isotopic enrichments and from the routing of 13C label from threonine degradation to glycine. For both planktonic cells and the mature biofilm, 20% of pentaglycyl bridges are not cross-linked and are potential surface-protein attachment sites. None of these sites has a surface protein attached in the planktonic cells, but one-fourth have a surface protein attached in the mature biofilm. Moreover, the leucine-label shows that the concentration of β-strands in leucine-rich regions doubles in the mature biofilm. Thus, a primary event in establishing a S. aureus biofilm is extensive decoration of the cell surface with surface proteins that are linked covalently to the cell wall and promote cell-cell adhesion.  相似文献   

6.
Rotational-echo double-resonance (REDOR) NMR is a powerful and versatile solid-state NMR measurement that has been recruited to elucidate drug modes of action and to drive the design of new therapeutics. REDOR has been implemented to examine composition, structure, and dynamics in diverse macromolecular and whole-cell systems, including taxol-bound microtubules, enzyme–cofactor–inhibitor ternary complexes, and antibiotic–whole-cell complexes. The REDOR approach involves the integrated design of specific isotopic labeling strategies and the selection of appropriate REDOR experiments. By way of example, this digest illustrates the versatility of the REDOR approach, with an emphasis on the practical considerations of experimental design and data interpretation.  相似文献   

7.
Rotational-echo double-resonance (REDOR) 13C NMR spectra (with 19F dephasing) have been obtained of 6-fluorotryptophan complexed by a polymeric amphiphilic nanosphere consisting of a polystyrene core covalently attached to a poly(acrylic acid)-polyacrylamide shell. The REDOR spectra show that aromatic carbons from the polystyrene core and oxygenated carbons in the poly(acrylic acid)-polyacrylamide shell are both proximate to the 19F of 6-fluorotryptophan. Molecular modeling restrained by distances inferred from the REDOR spectra suggests that all of the 6-fluorotryptophans are in the shell but within 10 A of the core-shell interface.  相似文献   

8.
Amphotericin B (AmB) is thought to exert its antifungal activity by forming an ion-channel assembly in the presence of ergosterol. In the present study we aimed to elucidate the mode of molecular interactions between AmB and ergosterol in hydrated phospholipid bilayers using the rotational echo double resonance (REDOR) spectra. We first performed (13)C{(19)F}REDOR experiments with C14-(19)F-labeled AmB and biosynthetically (13)C-labeled ergosterol and implied that both "head-to-head" and "head-to-tail" orientations occur for AmB-ergosterol interaction in the bilayers. To further confirm the "head-to-tail" pairing, (13)C-labeled ergosterol at the dimethyl terminus (C26/C27) was synthesized and subjected to the REDOR measurements. The spectra unambiguously demonstrated the presence of a "head-to-tail" orientation for AmB-ergosterol pairing. In order to obtain information on the position of the dimethyl terminus of ergosterol in membrane, (13)C{(31)P}REDOR were carried out using the labeled ergosterol and the phosphorus atom of a POPC headgroup. Significant REDOR dephasing was observed at the C26/C27 signal of ergosterol in the presence of AmB, but not in the absence of AmB, clearly indicating that the side-chain terminus of ergosterol in the AmB complex comes close to the bilayer surface.  相似文献   

9.
The 46-kD enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the condensation of shikimate-3-phosphate (S3P) and phosphoenolpyruvate to form EPSP. The reaction is inhibited by N-(phosphonomethyl)-glycine (Glp), which, in the presence of S3P, binds to EPSP synthase to form a stable ternary complex. We have used solid-state NMR and molecular modeling to characterize the EPSP synthase-S3P-Glp ternary complex. Modeling began with the crystal coordinates of the unliganded protein, published distance restraints, and information from the chemical modification and mutagenesis literature on EPSP synthase. New inter-ligand and ligand-protein distances were obtained. These measurements utilized the native (31)P in S3P and Glp, biosynthetically (13)C-labeled S3P, specifically (13)C and (15)N labeled Glp, and a variety of protein-(15)N labels. Several models were investigated and tested for accuracy using the results of both new and previously published rotational-echo double resonance (REDOR) NMR experiments. The REDOR model is compared with the recently published X-ray crystal structure of the ternary complex, PDB code 1G6S. There is general agreement between the REDOR model and the crystal structure with respect to the global folding of the two domains of EPSP synthase and the relative positioning of S3P and Glp in the binding pocket. However, some of the REDOR data are in disagreement with predictions based on the coordinates of 1G6S, particularly those of the five arginines lining the binding site. We attribute these discrepancies to substantive differences in sample preparation for REDOR and X-ray crystallography. We applied the REDOR restraints to the 1G6S coordinates and created a REDOR-refined xray structure that agrees with the NMR results.  相似文献   

10.
Yang J  Weliky DP 《Biochemistry》2003,42(40):11879-11890
The HIV-1 fusion peptide serves as a useful model system for understanding viral/target cell fusion, at least to the lipid-mixing stage. Previous solid-state NMR studies have shown that the membrane-bound HIV-1 fusion peptide adopts an extended conformation in a lipid mixture close to that of host cells of the virus. In the present study, solid-state NMR REDOR methods were applied for detection of oligomeric beta strand structure. The samples were prepared under fusogenic conditions and contained equimolar amounts of two peptides, one with selective [(13)C]carbonyl labeling and the other with selective [(15)N]amide labeling. In the REDOR measurements, observation of reduced (13)C intensity due to hydrogen-bonded amide (15)N provides strong experimental evidence of oligomer formation by the membrane-associated peptide. Comparison of REDOR spectra on samples that were labeled at different residue positions suggests that there are both parallel and antiparallel arrangements of peptide strands. In the parallel arrangement, interpeptide hydrogen bonding decreases toward the C-terminus, while in the antiparallel arrangement, hydrogen bonds are observed along the entire length of residues which was probed (Gly-5 to Gly-16). For the parallel arrangement, these observations are consistent with the model in which the apolar N-terminal and central regions of the peptides penetrate into the membrane and hydrogen bond with one another while the polar C-terminus of the peptide is outside the membrane and hydrogen bonds with water. These measurements show that, at least at the end state of fusion, the peptide can adopt an oligomeric beta strand structure.  相似文献   

11.
Rotational-Echo Double-Resonance (REDOR) NMR on strategically 13C and 15N labeled samples is used to study the conformation of the LGXQ (X = S, G, or N) motif in the major ampullate gland dragline silk from the spider Nephila clavipes. A method is described for calculating REDOR dephasing curves suitable for background subtractions, using probability distributions of nitrogen atoms surrounding a given carbon site, which are developed from coordinates in the Brookhaven Protein Data Bank. The validity of the method is established by comparison to dephasings observed from natural abundance 13C peaks for G and A. Straightforward fitting of universal REDOR dephasing curves to the background corrected peaks of interest provide results which are not self-consistent, and a more sophisticated analysis is developed which better accounts for 15N labels which have scrambled from the intended positions. While there is likely some heterogeneity in the structures formed by the LGXQ sequences, the data indicate that they all form compact turn-like structures.  相似文献   

12.
The chemical shifts of specific (13)C and (15)N labels distributed throughout KIAGKIA-KIAGKIA-KIAGKIA (K3), an amphiphilic 21-residue antimicrobial peptide, prove that the peptide is in an all alpha-helical conformation in the bilayers of multilamellar vesicles (MLVs) containing dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol (1:1). Rotational-echo double-resonance (REDOR) (13)C[(31)P] and (15)N[(31)P] experiments on the same labeled MLVs show that on partitioning into the bilayer, the peptide chains remain in contact with lipid headgroups. The amphipathic lysine side chains of K3 in particular appear to play a key role in the electrostatic interactions with the acidic lipid headgroups. In addition to the extensive peptide-headgroup contact, (13)C[(19)F] REDOR experiments on MLVs containing specifically (19)F-labeled lipid tails suggest that a portion of the peptide is surrounded by a large number of lipid acyl chains. Complementary (31)P[(19)F] REDOR experiments on these MLVs show an enhanced headgroup-lipid tail contact resulting from the presence of K3. Despite these distortions, static (31)P NMR lineshapes indicate that the lamellar structure of the membrane is preserved.  相似文献   

13.
The interchain (13)C-(19)F dipolar coupling measured in a rotational-echo double-resonance (REDOR) experiment performed on mixtures of differently labeled KIAGKIA-KIAGKIA-KIAGKIA (K3) peptides (one specifically (13)C labeled, and the other specifically (19)F labeled) in multilamellar vesicles of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol (1:1) shows that K3 forms close-packed clusters, primarily dimers, in bilayers at a lipid/peptide molar ratio (L/P) of 20. Dipolar coupling to additional peptides is weaker than that within the dimers, consistent with aggregates of monomers and dimers. Analysis of the sideband dephasing rates indicates a preferred orientation between the peptide chains of the dimers. The combination of the distance and orientation information from REDOR is consistent with a parallel (N-N) dimer structure in which two K3 helices intersect at a cross-angle of approximately 20 degrees. Static (19)F NMR experiments performed on K3 in oriented lipid bilayers show that between L/P = 200 and L/P = 20, K3 chains change their absolute orientation with respect to the membrane normal. This result suggests that the K3 dimers detected by REDOR at L/P = 20 are not on the surface of the bilayer but are in a membrane pore.  相似文献   

14.
Aiming for structural analysis of amphotericin B (AmB) ion-channel assemblies in membrane, a covalent dimer was synthesized between 13C-labled AmB methyl ester and 19F-labled AmB. The dimer showed slightly weaker but significant biological activities against fungi and red blood cells compared with those of monomeric AmB. Then the dimer was subjected to 13C{19F}REDOR (Rotational-Echo Double Resonance) experiments in hydrated lipid bilayers. The obtained REDOR dephasing effects were explained by two components; a short 13C/19F distance (6.9 Å) accounting for 23% of the REDOR dephasing, and a longer one (14 Å) comprising the rest of the dephasing. The shorter distance is likely to reflect the formation of barrel-stave ion channel.  相似文献   

15.
The ability to simultaneously measure many long-range distances is critical to efficient and accurate determination of protein structures by solid-state NMR (SSNMR). So far, the most common distance constraints for proteins are 13C–15N distances, which are usually measured using the rotational-echo double-resonance (REDOR) technique. However, these measurements are restricted to distances of up to ~?5 Å due to the low gyromagnetic ratios of 15N and 13C. Here we present a robust 2D 13C–19F REDOR experiment to measure multiple distances to ~?10 Å. The technique targets proteins that contain a small number of recombinantly or synthetically incorporated fluorines. The 13C–19F REDOR sequence is combined with 2D 13C–13C correlation to resolve multiple distances in highly 13C-labeled proteins. We show that, at the high magnetic fields which are important for obtaining well resolved 13C spectra, the deleterious effect of the large 19F chemical shift anisotropy for REDOR is ameliorated by fast magic-angle spinning and is further taken into account in numerical simulations. We demonstrate this 2D 13C–13C resolved 13C–19F REDOR technique on 13C, 15N-labeled GB1. A 5-19F-Trp tagged GB1 sample shows the extraction of distances to a single fluorine atom, while a 3-19F-Tyr labeled GB1 sample allows us to evaluate the effects of multi-spin coupling and statistical 19F labeling on distance measurement. Finally, we apply this 2D REDOR experiment to membrane-bound influenza B M2 transmembrane peptide, and show that the distance between the proton-selective histidine residue and the gating tryptophan residue differs from the distances in the solution NMR structure of detergent-bound BM2. This 2D 13C–19F REDOR technique should facilitate SSNMR-based protein structure determination by increasing the measurable distances to the ~?10 Å range.  相似文献   

16.

We introduce a 13C–2H Rotational Echo DOuble Resonance (REDOR) technique that uses the difference between on-resonance and off-resonance 2H irradiation to detect dynamic segments in deuterated molecules. By selectively inverting specific regions of the 2H magic-angle spinning (MAS) sideband manifold to recouple some of the deuterons to nearby carbons, we distinguish dynamic and rigid residues in 1D and 2D 13C spectra. We demonstrate this approach on deuterated GB1, H/D exchanged GB1, and perdeuterated bacterial cellulose. Numerical simulations reproduce the measured mixing-time and 2H carrier-frequency dependence of the REDOR dephasing of bacterial cellulose. Combining numerical simulations with experiments thus allow the extraction of motionally averaged quadrupolar couplings from REDOR dephasing values.

  相似文献   

17.
An approach to the determination of the 2-13C chemical shift (CS) tensor orientation in pyrimidine bases via heteronuclear MAS NMR spectroscopy is presented. Considering a dipolar coupled spin 1/2 network of the type S1-I-S2 consisting of directly bonded heteronuclear spins, we have carried out numerical simulations to assess the sensitivity of I-S REDOR spinning sidebands to the Euler angles defining the orientation of the I-S1 and I-S2 dipolar vectors in the I spin CS tensor principal axes system. Our investigations clearly demonstrate the potential of I-S REDOR studies in IS1S2 systems for obtaining with high reliability and accuracy the I spin chemical shift tensor orientation in the molecular frame spanned by the two internuclear vectors I-S1 and I-S2. The significant contribution to the observed REDOR sideband intensities from anti-phase operator terms which are present at the start of the data acquisition is illustrated. The procedure for the recording and analysis of the I-S REDOR spectra in IS1S2 systems is presented and the measurement of the 2-13C CS tensor orientation in a polycrystalline sample of [1,3-15N2, 2-13C] uracil, which is one of the four bases in RNA, is experimentally demonstrated.  相似文献   

18.
The dynamic changes in the distribution of lignin and hemicelluloses (xylans and xyloglucans) in cell walls during the differentiation of secondary xylem in Eucommia ulmoides Oliv. were studied by means of ultraviolet light microscopy and transmission electron microscopy combined with immunogold labelling. In the cambial zone and cell expansion zone, xyloglucans were localized both in the tangential and radial walls, but no xylans or lignin were found in these regions. With the formation of secondary wall S1 layer, lignin occurred in the cell corners and middle lamella, while xylans appeared in S1 layer, and xyloglucans were localized in the primary walls and middle lamella. In pace with the formation of secondary wall S2 and S3 layer, lignification extended to S1, S2 and S3 layer in sequence, showing a patchy style of lignin deposition. Concurrently, xylans distributed in the whole secondary walls and xyloglucans, on the other hand, still localized in the primary walls and middle lamella. The results indicated that along with the formation and lignification of the secondary wall, great changes had taken place in the cell walls. Different parts of cell walls, such as cell corners, middle lamella, primary walls and various layers of secondary walls, had different kinds of hemicelluloses, which formed various cell wall architecture combined with lignin and other cell wall components.  相似文献   

19.
利用紫外光显微镜、透射电子显微镜结合免疫胶体金标记,研究了杜仲(Eucommia ulmoides Oliv.)次生木质部分化过程中木质素与半纤维素组分(木葡聚糖和木聚糖)在细胞壁分布的动态变化。在形成层及细胞伸展区域,细胞壁具有木葡聚糖的分布,而没有木聚糖和木质素沉积,随着次生壁S1层的形成,木质素出现在细胞角隅和胞间层,木聚糖开始出现在S1层中,此时木葡聚糖则分布在初生壁和胞间层;随着次生,壁S2层及S3层的形成和加厚,木质逐逐步由细胞角隅和胞间层扩展到S1、S2和S3层,其沉积呈现出不均匀的块状或片状沉积模式,在次生壁各层形成与其木质化的同时,木聚糖逐渐分布于整个次生壁中,而木糖聚糖仍局限分布于初生壁和胞间层。结果表明,随着细胞次生壁的形成与木质化,细胞壁结构发生较大变化。细胞壁的不同区域,如细胞角隅、胞间层、初生壁和次生壁各层,具有不同的半纤维素组成,其与木质等细胞壁组分结构构成不同的细胞壁分子结构。  相似文献   

20.
The degradation of cell walls of mesophyll, epidermis and fibre cells isolated from leaves of perennial and Italian ryegrass within the sheep rumen or by selected strains of rumen bacteria in vitro , was followed by estimation of dry matter loss, or loss of neutral sugar residues. Primary cell walls (mesophyll and epidermis) were fully degraded within 12 h in the rumen, while the more heavily lignified fibre cell walls showed only a 40% loss of dry matter over the same period. Neutral sugar residues were lost at a common rate from walls of all three cell types. Incubation of cell walls with cellulolytic bacteria showed that the extent to which cell walls were attacked was constantly ordered (epidermis > mesophyll > fibre). The rate of degradation of cell walls was less in axenic culture than within the rumen. Greatest weight losses were produced by Ruminococcus albus , followed by Bacteroides succinogenes , with Ruminococcus flavefaciens effecting the least change, regardless of the nature of the cell wall provided as a substrate. Xylose was more readily lost from primary cell walls than glucose during the early stages of attack, but both were lost at a common rate from fibre cell walls. Dry matter losses produced by the hemicellulolytic strain, Bacteroides ruminocola , were limited even after extended incubation. Electron microscopy indicated that R. albus was less commonly attached to cell walls than were the other cellulolytic strains, although evidence of capsular material was present. Bacteroides succinogenes was seen with an extensive capsule which enveloped clusters of cells, forming micro-colonies in association with the plant cell wall. Vesicle-like structures, commonly associated with the cellulolytic bacteria R. albus and B. succinogenes , were found on comparatively few occasions in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号