首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time, 15N solid-state NMR experiments were conducted on wild-type phospholamban (WT-PLB) embedded inside mechanically oriented phospholipid bilayers to investigate the topology of its cytoplasmic and transmembrane domains. 15N solid-state NMR spectra of site-specific 15N-labeled WT-PLB indicate that the transmembrane domain has a tilt angle of 13 degrees+/-6 degrees with respect to the POPC (1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine) bilayer normal and that the cytoplasmic domain of WT-PLB lies on the surface of the phospholipid bilayers. Comparable results were obtained from site-specific 15N-labeled WT-PLB embedded inside DOPC/DOPE (1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) mechanically oriented phospholipids' bilayers. The new NMR data support a pinwheel geometry of WT-PLB, but disagree with a bellflower structure in micelles, and indicate that the orientation of the cytoplasmic domain of the WT-PLB is similar to that reported for the monomeric AFA-PLB mutant.  相似文献   

2.
Sarcolipin (SLN), a 31 amino acid integral membrane protein, regulates SERCA1a and SERCA2a, two isoforms of the sarco(endo)plasmic Ca-ATPase, by lowering their apparent Ca(2+) affinity and thereby enabling muscle relaxation. SLN is expressed in both fast-twitch and slow-twitch muscle fibers with significant expression levels also found in the cardiac muscle. SLN shares approximately 30% identity with the transmembrane domain of phospholamban (PLN), and recent solution NMR studies carried out in detergent micelles indicate that the two polypeptides bind to SERCA in a similar manner. Previous 1D solid-state NMR experiments on selectively (15)N-labeled sites showed that SLN crosses the lipid bilayer with an orientation nearly parallel to the bilayer normal. With a view toward the characterization of SLN structure and its interactions with both lipids and SERCA, herein we report our initial structural and topological assignments of SLN in mechanically oriented DOPC/DOPE lipid bilayers as mapped by 2D (15)N PISEMA experiments. The PISEMA spectra obtained on uniformly (15)N-labeled protein as well as (15)N-Leu, (15)N-Ile and (15)N-Val map the secondary structure of SLN and, simultaneously, reveal that SLN exists in two distinct topologies. Both the major and the minor populations assume an orientation with the helix axis tilted by approximately 23 degrees with respect to the lipid bilayer normal, but vary in the rotation angle about the helix axis by approximately 5 degrees . The existence of the multiple populations in model membranes may be a significant requirement for SLN interaction with SERCA.  相似文献   

3.
The topologies of zervamicin II and alamethicin, labeled with (15)N uniformly, selectively, or specifically, have been investigated by oriented proton-decoupled (15)N solid-state NMR spectroscopy. Whereas at lipid-to-peptide (L/P) ratios of 50 (wt/wt) zervamicin II exhibits transmembrane alignments in 1,2-dicapryl (di-C10:0-PC) and 1,2-dilauroyl (di-C12:0-PC) phosphatidylcholine bilayers, it adopts orientations predominantly parallel to the membrane surface when the lengths of the fatty acyl chains are extended. The orientational order of zervamicin II increases with higher phospholipid concentrations, and considerable line narrowing is obtained in di-C10:0-PC/zervamicin II membranes at L/P ratios of 100 (wt/wt). In contrast to zervamicin, alamethicin is transmembrane throughout most, if not all, of its length when reconstituted into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers. The (31)P solid-state NMR spectra of all phospholipid/peptaibol samples investigated show a high degree of headgroup order, indicating that the peptides do not distort the bilayer structure. The observed differences in peptide orientation between zervamicin and alamethicin are discussed with reference to differences in their lengths, helical conformations, distribution of (hydroxy)proline residues, and hydrophobic moments. Possible implications for peptaibol voltage-gating are also described.  相似文献   

4.
Ampullosporin A and alamethicin are two members of the peptaibol family of antimicrobial peptides. These compounds are produced by fungi and are characterized by a high content of hydrophobic amino acids, and in particular the α-tetrasubstituted amino acid residue α-aminoisobutyric acid. Here ampullosporin A and alamethicin were uniformly labeled with 15N, purified and reconstituted into oriented phophatidylcholine lipid bilayers and investigated by proton-decoupled 15N and 31P solid-state NMR spectroscopy. Whereas alamethicin (20 amino acid residues) adopts transmembrane alignments in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes the much shorter ampullosporin A (15 residues) exhibits comparable configurations only in thin membranes. In contrast the latter compound is oriented parallel to the membrane surface in 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine and POPC bilayers indicating that hydrophobic mismatch has a decisive effect on the membrane topology of these peptides. Two-dimensional 15N chemical shift - 1H-15N dipolar coupling solid-state NMR correlation spectroscopy suggests that in their transmembrane configuration both peptides adopt mixed α-/310-helical structures which can be explained by the restraints imposed by the membranes and the bulky α-aminoisobutyric acid residues. The 15N solid-state NMR spectra also provide detailed information on the helical tilt angles. The results are discussed with regard to the antimicrobial activities of the peptides.  相似文献   

5.
Aisenbrey C  Bechinger B 《Biochemistry》2004,43(32):10502-10512
Knowledge of the alignment of alpha-helical polypeptides with respect to the membrane surface and their dynamics in the membrane are key to understanding the functional mechanisms of channels, antibiotics, and signal or translocation peptides. In this paper polypeptides have been labeled with [3,3,3-(2)H(3)]alanine as well as with (15)N at single site amide positions and reconstituted into oriented phospholipid bilayers. A transmembrane and two amphipathic helical polypeptides with the deuterium label at orthogonal positions have been investigated by deuterium and proton-decoupled (15)N solid-state NMR spectroscopy. The (15)N chemical shift measurements and the deuterium quadrupole splitting exhibit a highly complementary functional dependence with respect to the spatial alignment of the polypeptide. Therefore, the combination of these two measurements allows one to determine both the tilt and the rotational pitch angle with high precision. In addition, the deuterium line shape is very sensitive to mosaic spread and the relative orientation of the peptide. The solid-state NMR measurements indicate that the model sequences exhibit a small degree of mosaicity, when at the same time the phospholipid headgroup region is significantly distorted. Furthermore, the (2)H solid-state NMR spectra reveal small orientational and dynamic differences when the fatty acyl chain composition of the phosphatidylcholine bilayers is modified.  相似文献   

6.
Using the reconstituted Ca-ATPase vesicles as a model system, we demonstrated that the presence of 1,2-dioleoyl-sn-glycerol (diolein) in the membrane introduces a pronounced enhancement in the Ca-transport function of Ca-ATPase, while the 1,2-dipalmitoyl-sn-glycerol (dipalmitin) does not. We also found by both 31P NMR and freeze-fraction electron microscopy that diolein destabilized lipid bilayers to a greater extent than did dipalmitin. We conclude that the tendency of diacylglycerols to destabilize the phospholipid bilayer is related to their capacity to enhance the activity of the membrane calcium pump.  相似文献   

7.
Pardaxin is a membrane-lysing peptide originally isolated from the fish Pardachirus marmoratus. The effect of the carboxy-amide of pardaxin (P1a) on bilayers of varying composition was studied using (15)N and (31)P solid-state NMR of mechanically aligned samples and differential scanning calorimetry (DSC). (15)N NMR spectroscopy of [(15)N-Leu(19)]P1a found that the orientation of the peptide's C-terminal helix depends on membrane composition. It is located on the surface of lipid bilayers composed of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and is inserted in lipid bilayers composed of 1,2-dimyristoyl-phosphatidylcholine (DMPC). The former suggests a carpet mechanism for bilayer disruption whereas the latter is consistent with a barrel-stave mechanism. The (31)P chemical shift NMR spectra showed that the peptide significantly disrupts lipid bilayers composed solely of zwitterionic lipids, particularly bilayers composed of POPC, in agreement with a carpet mechanism. P1a caused the formation of an isotropic phase in 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) lipid bilayers. This, combined with DSC data that found P1a reduced the fluid lamellar-to-inverted hexagonal phase transition temperature at very low concentrations (1:50,000), is interpreted as the formation of a cubic phase and not micellization of the membrane. Experiments exploring the effect of P1a on lipid bilayers composed of 4:1 POPC:cholesterol, 4:1 POPE:cholesterol, 3:1 POPC:1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), and 3:1 POPE:POPG were also conducted, and the presence of anionic lipids or cholesterol was found to reduce the peptide's ability to disrupt bilayers. Considered together, these data demonstrate that the mechanism of P1a is dependent on membrane composition.  相似文献   

8.
Polyalanine-based peptides were prepared by solid-phase peptide synthesis, labeled with (15)N at selected sites, reconstituted into oriented phosphatidylcholine bilayers, and investigated by proton-decoupled (15)N solid-state NMR spectroscopy. The anisotropic (15)N chemical shift is a direct indicator of helix alignment with respect to the membrane normal. The in-plane to transmembrane equilibrium is the focus of this study. Time- and solvent-dependent transmembrane alignments of K(3)A(18)K(3) have been obtained, and these are stabilized when a few alanine residues are replaced with leucine. The results are discussed in the context of a model where polyalanines adopt a variety of configurations, which are interconnected by multiple equilibria. The data indicate hydrophobicity values of alanine close to zero when studied in the context of helical polypeptides (> or =24 residues) and phospholipid bilayers.  相似文献   

9.
Pardaxins are a class of ichthyotoxic peptides isolated from fish mucous glands. Pardaxins physically interact with cell membranes by forming pores or voltage-gated ion channels that disrupt cellular functions. Here we report the high-resolution structure of synthetic pardaxin Pa4 in sodium dodecylphosphocholine micelles, as determined by (1)H solution NMR spectroscopy. The peptide adopts a bend-helix-bend-helix motif with an angle between the two structure helices of 122 +/- 9 degrees , making this structure substantially different from the one previously determined in organic solvents. In addition, paramagnetic solution NMR experiments on Pa4 in micelles reveal that except for the C terminus, the peptide is not solvent-exposed. These results are complemented by solid-state NMR experiments on Pa4 in lipid bilayers. In particular, (13)C-(15)N rotational echo double-resonance experiments in multilamellar vesicles support the helical conformation of the C-terminal segment, whereas (2)H NMR experiments show that the peptide induces considerable disorder in both the head-groups and the hydrophobic core of the bilayers. These solid-state NMR studies indicate that the C-terminal helix has a transmembrane orientation in DMPC bilayers, whereas in POPC bilayers, this domain is heterogeneously oriented on the lipid surface and undergoes slow motion on the NMR time scale. These new data help explain how the non-covalent interactions of Pa4 with lipid membranes induce a stable secondary structure and provide an atomic view of the membrane insertion process of Pa4.  相似文献   

10.
Phospholamban (PLB) and Sarcolipin (SLN) are integral membrane proteins that regulate muscle contractility via direct interaction with the Ca-ATPase in cardiac and skeletal muscle, respectively. The molecular details of these protein-protein interactions are as yet undetermined. Solution and solid-state NMR spectroscopies have proven to be effective tools for deciphering such regulatory mechanisms to a high degree of resolution; however, large quantities of pure recombinant protein are required for these studies. Thus, recombinant PLB and SLN production in Escherichia coli was optimized for use in NMR experiments. Fusions of PLB and SLN to maltose binding protein (MBP) were constructed and optimal conditions for protein expression and purification were screened. This facilitated the large-scale production of highly pure protein. To confirm their functionality, the biological activities of recombinant PLB and SLN were compared to those of their synthetic counterparts. The regulation of Ca-ATPase activity by recombinant PLB and SLN was indistinguishable from the regulation by synthetic proteins, demonstrating the functional integrity of the recombinant constructs and ensuring the biological relevance of our future structural studies. Finally, NMR spectroscopic conditions were established and optimized for use in investigations of the mechanism of Ca-ATPase regulation by PLB and SLN.  相似文献   

11.
The orientation of a beta-sheet membrane peptide in lipid bilayers is determined, for the first time, using two-dimensional (2D) (15)N solid-state NMR. Retrocyclin-2 is a disulfide-stabilized cyclic beta-hairpin peptide with antibacterial and antiviral activities. We used 2D separated local field spectroscopy correlating (15)N-(1)H dipolar coupling with (15)N chemical shift to determine the orientation of multiply (15)N-labeled retrocyclin-2 in uniaxially aligned phosphocholine bilayers. Calculated 2D spectra exhibit characteristic resonance patterns that are sensitive to both the tilt of the beta-strand axis and the rotation of the beta-sheet plane from the bilayer normal and that yield resonance assignment without the need for singly labeled samples. Retrocyclin-2 adopts a transmembrane orientation in dilauroylphosphatidylcholine bilayers, with the strand axis tilted at 20 degrees +/- 10 degrees from the bilayer normal, but changes to a more in-plane orientation in thicker 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-choline (POPC) bilayers with a tilt angle of 65 degrees +/- 15 degrees . These indicate that hydrophobic mismatch regulates the peptide orientation. The 2D spectra are sensitive not only to the peptide orientation but also to its backbone (phi, psi) angles. Neither a bent hairpin conformation, which is populated in solution, nor an ideal beta-hairpin with uniform (phi, psi) angles and coplanar strands, agrees with the experimental spectrum. Thus, membrane binding orders the retrocyclin conformation by reducing the beta-sheet curvature but does not make it ideal. (31)P NMR spectra of lipid bilayers with different compositions indicate that retrocyclin-2 selectively disrupts the orientational order of anionic membranes while leaving zwitteronic membranes intact. These structural results provide insights into the mechanism of action of this beta-hairpin antimicrobial peptide.  相似文献   

12.
In order to better understand the driving forces that determine the alignment of amphipathic helical polypeptides with respect to the surface of phospholipid bilayers, lysine-containing peptide sequences were designed, prepared by solid-phase chemical synthesis, and reconstituted into membranes. CD spectroscopy indicates that all peptides exhibit a high degree of helicity in the presence of SDS micelles or POPC small unilamellar vesicles. Proton-decoupled (31)P-NMR solid-state NMR spectroscopy demonstrates that in the presence of peptides liquid crystalline phosphatidylcholine membranes orient well along glass surfaces. The orientational distribution and dynamics of peptides labeled with (15)N at selected sites were investigated by proton-decoupled (15)N solid-state NMR spectroscopy. Polypeptides with a single lysine residue adopt a transmembrane orientation, thereby locating this polar amino acid within the core region of the bilayer. In contrast, peptides with > or = 3 lysines reside along the surface of the membrane. With 2 lysines in the center of an otherwise hydrophobic amino acid sequence the peptides assume a broad orientational distribution. The energy of lysine discharge, hydrophobic, polar, and all other interactions are estimated to quantitatively describe the polypeptide topologies observed. Furthermore, a molecular modeling algorithm based on the hydrophobicities of atoms in a continuous hydrophilic-hydrophobic-hydrophilic potential describes the experimentally observed peptide topologies well.  相似文献   

13.
Vpu is an 81-residue accessory protein of HIV-1. Because it is a membrane protein, it presents substantial technical challenges for the characterization of its structure and function, which are of considerable interest because the protein enhances the release of new virus particles from cells infected with HIV-1 and induces the intracellular degradation of the CD4 receptor protein. The Vpu-mediated enhancement of the virus release rate from HIV-1-infected cells is correlated with the expression of an ion channel activity associated with the transmembrane hydrophobic helical domain. Vpu-induced CD4 degradation and, to a lesser extent, enhancement of particle release are both dependent on the phosphorylation of two highly conserved serine residues in the cytoplasmic domain of Vpu. To define the minimal folding units of Vpu and to identify their activities, we prepared three truncated forms of Vpu and compared their structural and functional properties to those of full-length Vpu (residues 2-81). Vpu(2-37) encompasses the N-terminal transmembrane alpha-helix; Vpu(2-51) spans the N-terminal transmembrane helix and the first cytoplasmic alpha-helix; Vpu(28-81) includes the entire cytoplasmic domain containing the two C-terminal amphipathic alpha-helices without the transmembrane helix. Uniformly isotopically labeled samples of the polypeptides derived from Vpu were prepared by expression of fusion proteins in E. coli and were studied in the model membrane environments of lipid micelles by solution NMR spectroscopy and oriented lipid bilayers by solid-state NMR spectroscopy. The assignment of backbone resonances enabled the secondary structure of the constructs corresponding to the transmembrane and the cytoplasmic domains of Vpu to be defined in micelle samples by solution NMR spectroscopy. Solid-state NMR spectra of the polypeptides in oriented lipid bilayers demonstrated that the topology of the domains is retained in the truncated polypeptides. The biological activities of the constructs of Vpu were evaluated. The ion channel activity is confined to the transmembrane alpha-helix. The C-terminal alpha-helices modulate or promote the oligomerization of Vpu in the membrane and stabilize the conductive state of the channel, in addition to their involvement in CD4 degradation.  相似文献   

14.
Ouellet M  Doucet JD  Voyer N  Auger M 《Biochemistry》2007,46(22):6597-6606
We have investigated the interaction between a synthetic amphipathic 14-mer peptide and model membranes by solid-state NMR. The 14-mer peptide is composed of leucines and phenylalanines modified by the addition of crown ethers and forms a helical amphipathic structure in solution and bound to lipid membranes. To shed light on its membrane topology, 31P, 2H, 15N solid-state NMR experiments have been performed on the 14-mer peptide in interaction with mechanically oriented bilayers of dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), and dipalmitoylphosphatidylcholine (DPPC). The 31P, 2H, and 15N NMR results indicate that the 14-mer peptide remains at the surface of the DLPC, DMPC, and DPPC bilayers stacked between glass plates and perturbs the lipid orientation relative to the magnetic field direction. Its membrane topology is similar in DLPC and DMPC bilayers, whereas the peptide seems to be more deeply inserted in DPPC bilayers, as revealed by the greater orientational and motional disorder of the DPPC lipid headgroup and acyl chains. 15N{31P} rotational echo double resonance experiments have also been used to measure the intermolecular dipole-dipole interaction between the 14-mer peptide and the phospholipid headgroup of DMPC multilamellar vesicles, and the results indicate that the 14-mer peptide is in contact with the polar region of the DMPC lipids. On the basis of these studies, the mechanism of membrane perturbation of the 14-mer peptide is associated to the induction of a positive curvature strain induced by the peptide lying on the bilayer surface and seems to be independent of the bilayer hydrophobic thickness.  相似文献   

15.
The three-dimensional backbone structure of the transmembrane domain of Vpu from HIV-1 was determined by solid-state NMR spectroscopy in two magnetically-aligned phospholipid bilayer environments (bicelles) that differed in their hydrophobic thickness. Isotopically labeled samples of Vpu(2-30+), a 36-residue polypeptide containing residues 2-30 from the N-terminus of Vpu, were incorporated into large (q = 3.2 or 3.0) phospholipid bicelles composed of long-chain ether-linked lipids (14-O-PC or 16-O-PC) and short-chain lipids (6-O-PC). The protein-containing bicelles are aligned in the static magnetic field of the NMR spectrometer. Wheel-like patterns of resonances characteristic of tilted transmembrane helices were observed in two-dimensional (1)H/(15)N PISEMA spectra of uniformly (15)N-labeled Vpu(2-30+) obtained on bicelle samples with their bilayer normals aligned perpendicular or parallel to the direction of the magnetic field. The NMR experiments were performed at a (1)H resonance frequency of 900 MHz, and this resulted in improved data compared to lower-resonance frequencies. Analysis of the polarity-index slant-angle wheels and dipolar waves demonstrates the presence of a transmembrane alpha-helix spanning residues 8-25 in both 14-O-PC and 16-O-PC bicelles, which is consistent with results obtained previously in micelles by solution NMR and mechanically aligned lipid bilayers by solid-state NMR. The three-dimensional backbone structures were obtained by structural fitting to the orientation-dependent (15)N chemical shift and (1)H-(15)N dipolar coupling frequencies. Tilt angles of 30 degrees and 21 degrees are observed in 14-O-PC and 16-O-PC bicelles, respectively, which are consistent with the values previously determined for the same polypeptide in mechanically-aligned DMPC and DOPC bilayers. The difference in tilt angle in C14 and C16 bilayer environments is also consistent with previous results indicating that the transmembrane helix of Vpu responds to hydrophobic mismatch by changing its tilt angle. The kink found in the middle of the helix in the longer-chain C18 bilayers aligned on glass plates was not found in either of these shorter-chain (C14 or C16) bilayers.  相似文献   

16.
The polypeptide corresponding to the signal sequence of the M13 coat protein and the five N-terminal residues of the mature protein was prepared by solid-phase peptide synthesis with a 15N isotopic label at the alanine-12 position. Multidimensional solution NMR spectroscopy and molecular modeling calculations indicate that this polypeptide assumes helical conformations between residues 5 and 20, in the presence of sodium dodecylsulfate micelles. This is in good agreement with circular dichroism spectroscopic measurement, which shows an α-helix content of approximately 42%. The α-helix comprises an uninterrupted hydrophobic stretch of ≤12 amino acids, which is generally believed to be too short for a stable transmembrane alignment in a biological bilayer. The monoexponential proton-deuterium exchange kinetics of this hydrophobic helical region is characterized by half-lives of 15–75 minutes (pH 4.2, 323 K). When the polypeptide is reconstituted into phospholipid bilayers, the broad anisotropy of the proton-decoupled 15N solid-state NMR spectroscopy indicates that the hydrophobic helix is immobilized close to the lipid bilayer surface at the time scale of 15N solid-state NMR spectroscopy (10−4 seconds). By contrast, short correlation times, immediate hydrogen-deuterium exchange as well as nuclear Overhauser effect crosspeak analysis suggest that the N and C termini of this polypeptide exhibit a mobile random coil structure. The implications of these structural findings for possible mechanisms of membrane insertion and translocation as well as for membrane protein structure prediction algorithms are discussed. © 1997 Wiley-Liss Inc.  相似文献   

17.
Sudheendra US  Bechinger B 《Biochemistry》2005,44(36):12120-12127
Ion channel peptides have been prepared by solid-phase peptide synthesis, labeled with 15N at selected sites, and reconstituted into oriented lipid bilayers. The (Leu-Ser-Ser-Leu-Leu-Ser-Leu)3-CONH2 peptide has previously been shown to exhibit well-defined and discrete ionic conductances when investigated by single-channel measurements [Lear, J. D., et al. (1988) Science 240, 1177]. Proton-decoupled 15N solid-state NMR spectroscopy indicates that (Leu-Ser-Ser-Leu-Leu-Ser-Leu)3-CONH2 preferentially aligns parallel to the membrane surface in excellent agreement with its amphipathic helical structure. However, by carefully choosing the conditions of the membrane environment, significant contributions that are indicative of transmembrane alignments become obvious in the 15N chemical shift solid-state NMR spectra. The data thereby provide experimental evidence for an equilibrium between in-plane and transmembrane-oriented helix configurations where the transmembrane and surface-oriented peptide fractions are in slow exchange. Similar topological equilibria are observed when the N-terminus of the LS21 peptide is acetylated. These observations provide experimental support for previous models, suggesting that the channels observed in single-channel conductance measurements are indeed formed by hexameric transmembrane helical bundles. In contrast, the shorter peptide (Leu-Ser-Ser-Leu-Leu-Ser-Leu)2-CONH2 is oriented parallel to the membrane surface under all conditions tested. This peptide exhibits erratic conductance changes when investigated by electrophysiological methods, probably because it is too short to span the lipid bilayer.  相似文献   

18.
Phospholamban (PLB) is a 52-amino acid integral membrane protein that regulates the flow of Ca(2+) ions in cardiac muscle cells. In the present study, the transmembrane domain of PLB (24-52) was incorporated into phospholipid bilayers prepared from 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC). Solid-state (31)P and (2)H NMR experiments were carried out to study the behavior of POPC bilayers in the presence of the hydrophobic peptide PLB at temperatures ranging from 30 degrees C to 60 degrees C. The PLB peptide concentration varied from 0 mol % to 6 mol % with respect to POPC. Solid-state (31)P NMR spectroscopy is a valuable technique to study the different phases formed by phospholipid membranes. (31)P NMR results suggest that the transmembrane protein phospholamban is incorporated successfully into the bilayer and the effects are observed in the lipid lamellar phase. Simulations of the (31)P NMR spectra were carried out to reveal the formation of different vesicle sizes upon PLB insertion. The bilayer vesicles fragmented into smaller sizes by increasing the concentration of PLB with respect to POPC. Finally, molecular order parameters (S(CD)) were calculated by performing (2)H solid-state NMR studies on deuterated POPC (sn-1 chain) phospholipid bilayers when the PLB peptide was inserted into the membrane.  相似文献   

19.
Yamaguchi S  Hong T  Waring A  Lehrer RI  Hong M 《Biochemistry》2002,41(31):9852-9862
Protegrin-1 (PG-1) is a broad-spectrum beta-sheet antimicrobial peptide found in porcine leukocytes. The mechanism of action and the orientation of PG-1 in lipid bilayers are here investigated using (2)H, (31)P, (13)C, and (15)N solid-state NMR spectroscopy. (2)H spectra of mechanically aligned and chain-perdeuterated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) bilayers indicate that PG-1 at high concentrations destroys the orientational order of the aligned lamellar bilayer. The conformation of the lipid headgroups in the unoriented region is significantly altered, as seen from the (31)P spectra of POPC and the (2)H spectra of headgroup-deuterated 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine. These observations indicate that PG-1 disrupts microbial membranes by breaking the extended bilayer into smaller disks, where a significant fraction of lipids is located in the edges of the disks with a distribution of orientations. These edges allow the lipid bilayer to bend back on itself as in toroidal pores. Interestingly, this loss of bilayer orientation occurs only in long-chain lipids such as POPC and not in shorter chain lipids such as 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine (DLPC). To understand the mode of binding of PG-1 to the lipid bilayer, we determined the orientation of PG-1 in DLPC bilayers. The (13)CO and (15)N chemical shifts of Val-16 labeled PG-1 indicate that the beta-strand axis is tilted by 55 degrees +/- 5 degrees from the bilayer normal while the normal of the beta-sheet plane is 48 degrees +/- 5 degrees from the bilayer normal. This orientation favors interaction of the hydrophobic backbone of the peptide with the hydrophobic core of the bilayer and positions the cationic Arg side chains to interact with the anionic phosphate groups. This is the first time that the orientation of a disulfide-stabilized beta-sheet membrane peptide has been determined by solid-state NMR.  相似文献   

20.
The structure of the membrane anchor domain (VpuMA) of the HIV-1-specific accessory protein Vpu has been investigated in solution and in lipid bilayers by homonuclear two-dimensional and solid-state nuclear magnetic resonance spectroscopy, respectively. Simulated annealing calculations, using the nuclear Overhauser enhancement data for the soluble synthetic peptide Vpu1-39 (positions Met-1-Asp-39) in an aqueous 2,2,2-trifluoroethanol (TFE) solution, afford a compact well-defined U-shaped structure comprised of an initial turn (residues 1-6) followed by a linker (7-9) and a short helix on the N-terminal side (10-16) and a further longer helix on the C-terminal side (22-36). The side chains of the two aromatic residues (Trp-22 and Tyr-29) in the longer helix are directed toward the center of the molecule around which the hydrophobic core of the folded VpuMA is positioned. As the observed solution structure is inconsistent with the formation of ion-conductive membrane pores defined previously for VpuMA in planar lipid bilayers, the isolated VpuMA domain as peptide Vpu1-27 was investigated in oriented phospholipid bilayers by proton-decoupled 15N cross polarization solid-state NMR spectroscopy. The line widths and chemical shift data of three selectively 15N-labeled peptides are consistent with a transmembrane alignment of a helical polypeptide. Chemical shift tensor calculations imply that the data sets are compatible with a model in which the nascent helices of the folded solution structure reassemble to form a more regular linear alpha-helix that lies parallel to the bilayer normal with a tilt angle of 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号