首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cDNA of RDC4, a putative receptor of the G protein-coupled receptor family, has been cloned by PCR methodology. The primary structure of this receptor showed homology with the serotonin 5-HT1A receptor. In this work, RDC4 mRNA has been injected in Y1 adrenal cells and Xenopus oocytes and RDC4 cDNA has been transfected transiently in cos-7 cells. In all these systems serotonin elicited a rise in cyclic AMP levels. Binding studies on membranes of the transfected cos-7 cells using [3H]-LSD showed a pattern of drug affinities consistent with the known properties of a 5-HT1D receptor. RDC4 therefore codes for a 5-HT1D receptor which in the studied systems is positively coupled to adenylate cyclase.  相似文献   

3.
The three Galphai subunits were independently depleted from rat pituitary GH4C1 cells by stable transfection of each Galphai antisense rat cDNA construct. Depletion of any Galphai subunit eliminated receptor-induced inhibition of basal cAMP production, indicating that all Galphai subunits are required for this response. By contrast, receptor-mediated inhibition of vasoactive intestinal peptide (VIP)-stimulated cAMP production was blocked by selective depletions for responses induced by the transfected serotonin 1A (5-HT1A) (Galphai2 or Galphai3) or endogenous muscarinic-M4 (Galphai1 or Galphai2) receptors. Strikingly, receptor activation in Galphai1-depleted clones (for the 5-HT1A receptor) or Galphai3-depleted clones (for the muscarinic receptor) induced a pertussis toxin-sensitive increase in basal cAMP production, whereas the inhibitory action on VIP-stimulated cAMP synthesis remained. Finally, in Galphai2-depleted clones, activation of 5-HT1A receptors increased VIP-stimulated cAMP synthesis. Thus, 5-HT1A and muscarinic M4 receptor may couple dominantly to Galphai1 and Galphai3, respectively, to inhibit cAMP production. Upon removal of these Galphai subunits to reduce inhibitory coupling, stimulatory receptor coupling is revealed that may involve Gbetagamma-induced activation of adenylyl cyclase II, a Gi-stimulated cyclase that is predominantly expressed in GH4C1 cells. Thus Gi-coupled receptor activation involves integration of both inhibitory and stimulatory outputs that can be modulated by specific changes in alphai subunit expression level.  相似文献   

4.
In the last few years, molecular biology has led to the cloning and characterization of several 5-HT receptors (serotonin receptors) in vertebrates and in invertebrates. These studies have allowed identification not only of 5-HT receptors already described but also of novel subtypes. The molecular cloning of 13 different mammalian receptor subtypes revealed an unexpected heterogeneity among 5-HT receptors. Except for the 5-HT3 receptors which are ligand-gated ion channel receptors, all the other 5-HT receptors belong to the large family of receptors interacting with G proteins. Based on their amino acid sequence homology and coupling to second messengers these receptors can be divided into distinct families: the 5-HT1 family contains receptors that are negatively coupled to adenylate cyclase; the 5-HT1 family includes receptors that stimulate phospholipase C; the adenylyl cyclase stimulatory receptors are a heterogeneous group including the 5-HT4 receptor which has not yet been cloned, the Drosophila 5-HTdrol receptor and two mammalian receptors tentatively named 5-HT6 and 5-HT7 receptors. The 5-HT5A and 5-HT5B receptors might constitute a new family of 5-HT receptors whose effectors are unknown. This review focusses on the molecular characteristics of the cloned 5-HT receptors such as their structure, their effector systems and their distribution within the central nervous system. The existence of a large number of receptors with distinct signalling properties and expression patterns might enable a single substance like 5-HT to generate simultaneously a large panel of effects in many brain structures. The availability of the genes encoding these receptors has already allowed a partial characterization of their structure-function relationship and will probably allow in the future a dissection of the contribution of each of these receptor subtypes to physiology and behaviour.  相似文献   

5.
Cloning and characterization of a Drosophila tyramine receptor.   总被引:7,自引:3,他引:4       下载免费PDF全文
Receptors for biogenic amines such as dopamine, serotonin and epinephrine belong to the family of receptors that interact with G proteins and share a putative seven transmembrane domain structure. Using a strategy based on nucleotide sequence homology between the corresponding genes, we have isolated Drosophila cDNA clones encoding a new member of the G protein-coupled receptor family. This protein exhibits highest homology to the human alpha 2 adrenergic receptors, the human 5HT1A receptor and a recently cloned Drosophila serotonin receptor. The corresponding mRNA is found predominantly in adult Drosophila heads. Membranes from mammalian cells expressing this receptor displayed high affinity binding sites for [3H]yohimbine, an alpha 2 adrenergic receptor antagonist (Kd = 4.45 x 10(-9) M). Tyramine was the most efficient of the putative Drosophila neurotransmitters at displacing [3H]yohimbine binding (EC50 = 1.25 x 10(-6) M). Furthermore tyramine induced an inhibition of adenylate cyclase activity in NIH 3T3 cells expressing this receptor. The Drosophila tyramine receptor that we have isolated might therefore be an invertebrate equivalent of the mammalian alpha 2 adrenergic receptors.  相似文献   

6.
Long-term (18 h) activation of 5-HT1A receptors alters 5-HT1A receptor-G protein coupling and leads to heterologous sensitization of adenylate cyclase. In contrast, the effects of short-term (2 h) 5-HT1A receptor activation on subsequent adenylate cyclase activity have not been determined. The present study examined and characterized 5-HT1A receptor-induced heterologous sensitization following short-term activation in CHO-5-HT1A cells. Short-term activation of 5-HT1A receptors with full agonists, as well as the partial agonist, buspirone, markedly enhanced subsequent forskolin-stimulated cyclic AMP accumulation. This heterologous sensitization was evident after 30 min treatment with 5HT and appeared to be near maximal following 2 h agonist treatment. Sensitization was characterized by a dose-dependent increase in forskolin-stimulated cyclic AMP accumulation and was prevented by WAY 100635 or by pertussis toxin treatment. The ability of the 5-HT1A agonists to induce heterologous sensitization was not significantly altered by agents shown previously to modulate 5-HT1A-mediated inhibition of cyclic AMP accumulation.  相似文献   

7.
We have isolated a hamster fibroblast cDNA clone that encodes a serotoninergic receptor whose deduced amino acid sequence displays 94% identity with the rat brain serotonin (5-HT) type 2 receptor. When expressed in Xenopus oocytes, the hamster receptor efficiently couples to the phosphoinositide second messenger system and leads to intracellular Ca2+ mobilization in response to 5-HT. To determine the pharmacological properties of this receptor, and to evaluate the role of phospholipase C (PLC) activation in growth modulation by 5-HT, we have expressed it in hamster fibroblasts. Transfected cells that express 5-HT receptors were selected using a novel method based on coexpression of the Na+/H+ antiporter gene as a selectable marker. After co-transfection of the 5-HT receptor and Na+/H+ antiporter cDNAs in fibroblasts lacking antiporter activity (variants of the CCL39 line), 50% of the clones resistant to an acute acid load express functional receptors. The pharmacological profile of the transfected receptor is consistent with it being of the 5-HT2 subtype, and the extent of 5-HT-stimulated PLC activation in independent clones correlates with their relative level of cRNA expression. In cells in where addition of 5-HT leads to strong activation of PLC, and inhibition of adenylate cyclase via endogenous 5-HT1b receptors, 5-HT alone has little effect on DNA synthesis stimulation. Thus we conclude that activation of the PLC signalling pathway in these cells is not sufficient to trigger G0/G1 to S phase transition. Strong activation of PLC via 5-HT2 receptors does however contribute to the synergy observed between 5-HT (Gi-coupled pathway) and fibroblast growth factor (tyrosine kinase-activated pathway) on DNA synthesis reinitiation in transfected cells.  相似文献   

8.
Biogenic amines such as serotonin elicit or modulate a wide range of behaviours by interacting with multiple receptor subtypes. We have isolated cDNA clones encoding three distinct Drosophila serotonin receptors which belong to the G protein-coupled receptor family. When expressed in mammalian cells, these receptors activate different intracellular effector systems. The 5HT-dro1 receptor stimulates adenylate cyclase while the 5HT-dro2A and the 5HT-dro2B receptors inhibit adenylate cyclase and activate phospholipase C. Expression of all three receptors starts in late embryos and is restricted to distinct populations of cells in the central nervous system. The 5HT-dro2A receptor is predominantly expressed in midline motor neurons (VUM neurons) that innervate larval muscles thus suggesting a role for this receptor in motor control.  相似文献   

9.
Successful application of antisense oligonucleotides (ODNs) in cell biology and therapy will depend on the ease of design, efficiency of (intra)cellular delivery, ODN stability, and target specificity. Equally essential is a detailed understanding of the mechanism of antisense action. To address these issues, we employed phosphorothioate ODNs directed against specific regions of the mRNA of the serotonin 5HT1A receptor, governed by sequence and structure. We demonstrate that rather than various intracellular factors, the gene sequence per se primarily determines the antisense effect, since 5HT1a autoreceptors expressed in RN46A cells, postsynaptic receptors expressed in SN48 cells, and receptors overexpressed in LLP-K1 cells are all efficiently downregulated following ODN delivery via a cationic lipid delivery system. The data also reveal that the delivery system as such is a relevant parameter in ODN delivery. Antisense ODNs bound extensively to the RNA matrix in the cell nuclei, thereby interacting with target mRNA and causing its subsequent degradation. Antisense delivery effectively diminished the mRNA pool, thus resulting in downregulation of newly synthesized 5HT1A proteins, without the appearance of truncated protein fragments. In conjunction with the selected mRNA target sequences of the ODNs, the latter data indicated that effective degradation rather than a steric blockage of the mRNA impedes protein expression. The specificity of the antisense approach, as described in this study, is reflected by the effective functional downregulation of the 5-HT1A receptor.  相似文献   

10.
11.
Multiple mechanisms of serotonergic signal transduction   总被引:7,自引:0,他引:7  
B L Roth  D M Chuang 《Life sciences》1987,41(9):1051-1064
In this article we review serotonergic signal transduction mechanisms in the central and peripheral nervous systems and in a variety of target organs. The various classes of pharmacologically defined serotonergic receptors are coupled to three major effector systems: (1) adenylate cyclase; (2) phospholipase C mediated phosphoinositide (PI) hydrolysis and (3) ion channels (K+ and Ca++). Long term occupancy of serotonergic receptors also appears to induce alterations in mRNA and protein synthesis. For all three types of signal transduction there is evidence accumulating which suggests the involvement of guanine nucleotide regulatory proteins. Recent findings suggest that the distinct types of pharmacologically defined serotonergic receptors (5HT1A, 5HT1B, 5HT1c, 5HT2) may be coupled to one or more signal transduction systems. Thus, 5HT1 receptors may both activate and inhibit adenylate cyclase and increase K+-ion conductance in the hippocampus. 5HT2 receptors which activate PI hydrolysis in the brain, both open voltage-gated calcium channels and activate PI metabolism in certain smooth muscle preparations. Thus, each class of serotonergic receptor may be linked to one or more distinct biochemical transduction mechanisms. The possibility is raised that selective agonists and antagonists might be developed which have specific effects on a particular receptor-linked effector system.  相似文献   

12.
The inhibition of forskolin-stimulated adenylate cyclase activity by 5-hydroxytryptamine (5-HT) receptor agonists was measured in rat hippocampal membranes isolated from animals treated with vehicle or islet-activating protein (IAP; pertussis toxin). In vehicle-treated animals, 5-HT, 8-hydroxy-2-(di-n-propylamino)tetralin, buspirone, and gepirone were potent in inhibiting forskolin-stimulated adenylate cyclase activity with EC50 values of 60, 76, 376, and 530 nM, respectively. IAP treatment reduced by 30-55% the 5-HT1A agonist inhibition of adenylate cyclase activity via 5-HT1A receptors. The data indicate that the inhibitory guanine nucleotide-binding protein or Go (a similar GTP-binding protein of unknown function purified from brain) mediates the 5-HT1A agonist inhibition of hippocampal adenylate cyclase.  相似文献   

13.
Rats receiving injections of specific antagonists of dopamine receptors (SCH 23390 for D1, haloperidol for D2, and haloperidol+SCH 23390) once daily for 21 days develop a selective supersensitivity of the blocked receptors. To study the molecular correlates of these adaptive changes, we evaluated the involvement of GTP-binding proteins in the development of supersensitivity of dopamine receptors. By means of adenylate cyclase studies, we tested whether any of the treatments modified the functional response to GTP in striata dissected from control and treated rats. Our data show that the chronic blockade of D1 and/or D2 receptors potentiates both basal and dopamine receptor-stimulated adenylate cyclase activity in response to GTP. D1 receptor up-regulation correlates with an increased adenylate cyclase response to GTP, whereas D2 receptor up-regulation is accompanied by an enhanced GTP-induced inhibition of enzyme activity, in both basal and receptor-activated conditions. This potentiation does not seem to match the changes in mRNA content of Gs and Gi alpha subunits. Unexpectedly, however, a significant increase in Gi alpha subunit mRNA was found after the chronic blockade of D1 receptors; this result could be explained by cross-regulation between GTP-binding protein-mediated pathways. This cross-regulation could serve as a protective mechanism whereby cells exposing up-regulated receptors protect themselves from a condition of hyperactivity of the adenylate cyclase enzyme.  相似文献   

14.
Cultured endothelium derived from three fractions of human cerebral microvessels was used to characterize dopamine (DA) receptors linked to adenylate cyclase activity. DA or D1 agonist, (+/-)-SKF-82958 hydrobromide, stimulated endothelial cyclic AMP formation in a dose-dependent manner. The selective D1 antagonist, (+/-)SCH-23390, inhibited in a dose-dependent manner the production of cyclic AMP induced by DA. The affinity for the D1 receptor appeared to be greater in endothelium derived from large and small microvessels than from capillaries. Cholera toxin ADP-ribosylation of Gs proteins abolished the DA stimulatory effect on endothelial adenylate cyclase, whereas pertussis toxin ADP-ribosylation enhanced the DA-inducible formation, indicating the presence of both D1 and D2 receptors. Agonists of alpha 1-adrenergic receptors (phenylephrine, 6-fluoronorepinephrine) or serotonin (5-HT), which stimulated the production of cyclic AMP, had no additive effect on DA-stimulated cyclic AMP formation. Incubation of these agents with DA produced the same or lower levels of cyclic AMP as compared to that formed by DA alone. The effect of alpha 1-adrenergic agonists or 5-HT on DA production of cyclic AMP was partially prevented by the D2 antagonist, S(-)-sulpiride, or ketanserin (5-HT2 greater than alpha 1 greater than H1 antagonists), respectively. These findings represent the first demonstration of D1- (stimulatory) and D2- (inhibitory) receptors linked to adenylate cyclase in microvascular endothelium derived from human brain. The data also indicate that dopaminergic receptors can interact with either alpha 1-adrenergic or or 5-HT receptors in endothelium on the adenylate cyclase level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Anterior pituitary hormone secretion is under tonic suppression by hypothalamic somatostatin signaling through somatostatin receptor subtypes (SSTs). Because some hormonal axes are known to be abnormally regulated by ligand-independent constitutively active G protein-coupled receptors, we tested pituitary SSTs for selective constitutive signaling. We therefore differentially silenced endogenous SST2, SST3, and SST5 in somatostatin-sensitive ACTH-secreting mouse AtT-20 pituitary corticotroph cells using small inhibitory RNA (siRNA) and analyzed downstream SSTs-regulated pathways. Transfection with siRNA reduced specific receptor subtype mRNA expression up to 82%. Specificity of receptor silencing was validated against negative controls with different gene-selective siRNAs, concordance of mRNA and cAMP changes, reduced potency of receptor-selective agonists, and phenotype rescue by overexpression of the silenced receptor. Mouse SST3 > SST5 > SST2 knockdown increased basal cAMP accumulation (up to 200%) and ACTH secretion (up to 60%). SST2- and SST5-selective agonist potencies were reduced by SST3- and SST5-silencing, respectively. SST5 > SST2 = SST3 silencing also increased basal levels of ERK1/2 phosphorylation. SST3- and SST5-knockdown increased cAMP was only partially blocked by pertussis toxin. The results show that SST2, SST3, and SST5 exhibit constitutive activity in mouse pituitary corticotroph cells, restraining adenylate cyclase and MAPK activation and ACTH secretion. SST3 mainly inhibits cAMP accumulation and ACTH secretion, whereas SST5 predominantly suppresses MAPK pathway activation. Therefore, SST receptor subtypes control pituitary cell function not only through somatostatin binding to variably expressed cell membrane receptor subtypes, but also by differential ligand-independent receptor-selective constitutive action.  相似文献   

16.
We have developed an assay for serotonin (5-HT) stimulation of adenylate cyclase activity in membranes from adult guinea pig hippocampus. The response to 5-HT is concentration-dependent, with an EC50 of 0.01 microM, a shallow slope, and mean maximal stimulation of 90% over basal activity. The response to 5-HT is GTP-dependent and additive to the maximal stimulation by histamine. Micromolar concentrations of the known 5-HT receptor agonists, tryptamine and 5-methoxytryptamine, also stimulate cAMP production in this system, and their effect is not additive to that elicited by a maximal concentration of 5-HT. These results are consistent with the hypothesis that the response to 5-HT is elicited through a distinct receptor coupled to adenylate cyclase; the magnitude and the reproducibility of the 5-HT response in this system should make it useful for receptor classification. To examine the effect of prior exposure to endogenous 5-HT on the responsiveness of the system, we assayed 5-HT stimulation of enzyme activity in membranes prepared from animals 25-27 hrs after treatment with a single injection of reserpine (5 mg/kg, i.p.). The mean maximal stimulation of adenylate cyclase by 5-HT was increased to 150% over basal activity with no effect on the EC50 or slope of the 5-HT concentration-response curve. Reserpine pretreatment did not affect basal activity or histamine-stimulated adenylate cyclase activity. These results are discussed in the context of a hypothesis that endogenous 5-HT normally exerts a desensitizing effect on its receptors in situ.  相似文献   

17.
Serotonin (5-HT) suppresses the photo-responsiveness of medulla bilateral neurons (MBNs) that are involved in the coupling mechanism of the bilaterally paired optic lobe circadian pacemakers in the cricket, Gryllus bimaculatus. We found that forskolin, a highly specific activator of adenylate cyclase, mimicked the effects of serotonin on the MBNs. This fact suggests the involvement of cyclic 3', 5'-adenosine monophosphate (cAMP) in mediating the action of serotonin. We therefore tested the effects of various 5-HT receptor agonists and antagonists that are coupled to adenylate cyclase to specify the receptor involved. Application of 8-OH-DPAT that has affinity for both 5-HT(1A) and 5-HT(7) receptors suppressed the photo-responsiveness, like forskolin. The inhibitory effect of 8-OH-DPAT was effectively blocked by clozapine, a high affinity 5-HT(7) receptor antagonists with a very low affinity for 5-HT(2). Ketanserin, a selective 5-HT(2) antagonist, and NAN-190, a 5-HT(1A) antagonist, did not block it. These results suggest that serotonergic suppression of the photo-responsiveness of the MBNs is mediated by 5-HT(7)-like receptor subtypes.  相似文献   

18.
The inducible serotonergic 1C115-HT cell line expresses a defined set of serotonergic receptors of the 5-HT2B, 5-HT1B/D, and 5-HT2A subtypes, which sustain a regulation of serotonergic associated functions through G-protein-dependent signaling. 1C115-HT cells have been instrumental to assign a signaling function to the cellular prion protein PrPC. Here, we establish that antibody-mediated ligation of PrPC concomitant to agonist stimulation of 5-HT receptors modulates the couplings of all three serotonergic receptors present on 1C115-HT cells. Specific impacts of PrP antibodies were monitored depending on the receptor and pathway considered. PrPC ligation selectively cancels the 5-HT2A-PLC response, decreases the 5-HT1B/D negative coupling to adenylate cyclase, and potentiates the 5-HT2B-PLA2 coupling. As a result, PrPC ligation disturbs the functional interactions occurring between the signaling pathways of the three receptor subtypes. In 1C115-HT cells, antagonizing cross-talks arising from 5-HT2B and 5-HT2A receptors control the 5-HT1B/D function. PrPC ligation reinforces the negative regulation exerted by 5-HT2B on 5-HT1B/D receptors. On the other hand it abrogates the blocking action of 5-HT2A on the regulatory loop linking 5-HT1B/D receptors. We propose that the ligation of PrPC affects the potency or dynamics of G-protein activation by agonist-bound serotonergic receptors. Finally, the PrPC-dependent modulation of 5-HT receptor couplings is restricted to 1C115-HT cells expressing a complete serotonergic phenotype. It critically involves a PrPC-caveolin platform implemented on the neurites of 1C115-HT cells during differentiation. Our findings define PrPC as a modulator of 5-HT receptor coupling to G-proteins and thereby as a protagonist contributing to the homeostasis of serotonergic neurons. They provide a foundation for uncovering the impact of prion infection on serotonergic functions.  相似文献   

19.
Cloned human dopamine D2 receptor cDNA was isolated from a pituitary cDNA library and found to encode an additional 29 amino acid residues in the predicted intracellular domain between transmembrane regions 5 and 6 relative to a previously described rat brain D2 receptor. Results from polymerase chain reactions as well as in situ hybridization revealed that mRNA encoding both receptor forms is present in pituitary and brain of both rat and man. The larger form was predominant in these tissues and, as shown in the rat, expressed by dopaminergic and dopaminoceptive neurons. Analysis of the human gene showed that the additional peptide sequence is encoded by a separate exon. Hence, the two receptor forms are generated by differential splicing possibly to permit coupling to different G proteins. Both receptors expressed in cultured mammalian cells bind [3H]spiperone with high affinity and inhibit adenylyl cyclase, as expected of the D2 receptor subtype.  相似文献   

20.
G protein-coupled receptors comprise a family of genes that share significant sequence similarity. We have screened a rat genomic library under low stringency hybridization conditions with the coding portion of the hamster beta 2-adrenergic receptor gene to isolate new members of this gene family. We show that one of these clones, clone D, codes for a 5-hydroxytryptamine1A (5-HT1A) binding site since: 1) it possesses an intronless open reading frame encoding a protein with seven putative transmembrane domains and 89% amino acid identity with the human 5-HT1A receptor (G21); 2) when transfected into Ltk- cells, it expresses a ligand-binding site with the pharmacology of the 5-HT1A receptor subtype, including 5-HT- and spiroxatrine-displaceable binding of 8-hydroxy-(2-(N,N-di[2,3-3H]propylamino)-1,2,3,4-tetrahydronaphthalene (KH = 0.8 nM). We further show that clone D encodes a functional receptor because its binding site interacts with G proteins and because it mediates agonist-induced inhibition of basal and stimulated cAMP accumulation in transfected GH4C1 pituitary cells. Finally, we have analyzed the tissue distribution of 5-HT1A receptor mRNA in rat brain and have found that 5-HT1A mRNA is present with the expected distribution of the 5-HT1A receptor (highest in septum and hippocampus) but is present as three RNA species (3.9, 3.6, and 3.3 kilobases). These studies represent the first characterization of receptor function and brain distribution of the cloned rat 5-HT1A receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号