首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of beta-lactams with the purified mitochondrial carnitine/acylcarnitine transporter reconstituted in liposomes has been studied. Cefonicid, cefazolin, cephalothin, ampicillin, piperacillin externally added to the proteoliposomes, inhibited the carnitine/carnitine antiport catalysed by the reconstituted transporter. The most effective inhibitors were cefonicid and ampicillin with IC50 of 6.8 and 7.6mM, respectively. The other inhibitors exhibited IC50 values above 36 mM. Kinetic analysis performed with cefonicid and ampicillin revealed that the inhibition is completely competitive, i.e., the inhibitors interact with the substrate binding site. The Ki of the transporter is 4.9 mM for cefonicid and 9.9 mM for ampicillin. Cefonicid inhibited the transporter also on its internal side. The IC50 was 12.9 mM indicating that the inhibition was less pronounced than on the external side. Ampicillin and the other inhibitors were much less effective on the internal side. The beta-lactams were not transported by the carnitine/acylcarnitine transporter. Cephalosporins, and at much lower extent penicillins, caused irreversible inhibition of the transporter after prolonged time of incubation. The most effective among the tested antibiotics was cefonicid with IC50 of 0.12 mM after 60 h of incubation. The possible in vivo implications of the interaction of the beta-lactam antibiotics with the transporter are discussed.  相似文献   

2.
The carnitine carrier from rat liver mitochondria was purified by chromatography on hydroxyapatite and celite and reconstituted in egg yolk phospholipid vesicles by adsorbing the detergent on polystyrene beads. In the reconstituted system, in addition to the carnitine/carnitine exchange, the purified protein catalyzed a uni-directional transport (uniport) of carnitine measured as uptake into unloaded proteoliposomes as well as efflux from prelabelled proteoliposomes. In both cases the reaction followed a first-order kinetics with a rate constant of 0.023-0.026 min-1. Besides carnitine, also acylcarnitines were transported in the uniport mode. N-Ethylmaleimide inhibited the uni-directional transport of carnitine completely. The uniport of carnitine is not influenced by the delta pH and the electric gradient across the membrane. The activation energy for uniport was 115 kJ/mol and the half-saturation constant on the external side of the proteoliposomes was 0.53 mM. The maximal rate of the uniport at 25 degrees C was 0.2 mumol/min per mg protein, i.e. about 10 times lower than that of the reconstituted carnitine transport in exchange mode.  相似文献   

3.
The effect of omeprazole on the mitochondrial carnitine/acylcarnitine transporter has been studied in proteoliposomes. Externally added omeprazole inhibited the carnitine/carnitine antiport catalysed by the transporter. The inhibition was partially reversed by DTE indicating that it was caused by the covalent reaction of omeprazole with Cys residue(s). Inhibition of the C-less mutant transporter indicated also the occurrence of an alternative non-covalent mechanism. The IC50 of the inhibition of the WT and the C-less CACT by omeprazole were 5.4 µM and 29 µM, respectively. Inhibition kinetics showed non competitive inhibition of the WT and competitive inhibition of the C-less. The presence of carnitine or acylcarnitines during the incubation of the proteoliposomes with omeprazole increased the inhibition. Using site-directed Cys mutants it was demonstrated that C283 and C136 were essential for covalent inhibition. Molecular docking of omeprazole with CACT indicated the formation of both covalent interactions with C136 and C283 and non-covalent interactions in agreement with the experimental data.  相似文献   

4.
The carnitine/acylcarnitine transporter (CACT; SLC25A20) mediates an antiport reaction allowing entry of acyl moieties in the form of acylcarnitines into the mitochondrial matrix and exit of free carnitine. The transport function of CACT is crucial for the β-oxidation pathway. In this work, it has been found that CACT is partially acetylated in rat liver mitochondria as demonstrated by anti-acetyl-lys antibody immunostaining. Acetylation was reversed by the deacetylase Sirtuin 3 in the presence of NAD+. After treatment of the mitochondrial extract with the deacetylase, the CACT activity, assayed in proteoliposomes, increased. The half-saturation constant of the CACT was not influenced, while the V max was increased by deacetylation. Sirtuin 3 was not able to deacetylate the CACT when incubation was performed in intact mitoplasts, indicating that the acetylation sites are located in the mitochondrial matrix. Prediction on the localization of acetylated residues by bioinformatics correlates well with the experimental data. Recombinant CACT treated with acetyl-CoA was partially acetylated by non-enzymatic mechanism with a corresponding decrease of transport activity. The experimental data indicate that acetylation of CACT inhibits its transport activity, and thus may contribute to the regulation of the mitochondrial β-oxidation pathway.  相似文献   

5.
《BBA》2019,1860(9):708-716
The mitochondrial carnitine/acylcarnitine carrier (CACT) catalyzes an antiport of carnitine and acylcarnitines and also a uniport reaction with a rate of about one tenth with respect to the antiport rate. The antiport process results from the coupling of the two uniport reactions in opposite directions. In this mechanism, the transition of the carrier from the outward open conformation to the inward open one (or vice versa) is much faster for the carrier-substrate complex than for the unbound carrier. To investigate the molecular determinants that couple the binding of the substrate with the conformational transitions, site directed mutagenesis has been employed. The antiport or the uniport reaction was followed as [3H]carnitine uptake in or efflux from proteoliposomes reconstituted with the WT or Trp mutants of the rat CACT. Substitution of each the three Trp residues led to different results. Nearly no variations were observed upon substitution of W192 and/or W296 with Ala. While, substantial alteration of the transport function was observed in the mutants W224A, W224Y and W224F. Mutation of W224 led to the loss of the antiport function while the uniport function was unaltered. In these mutants impairment of the substrate affinity on the external side was also observed. The data highlights that W224 is involved in the coupling of the substrate binding with the matrix gate opening. The experimental data are in line with predictions by homology modeling of the CACT in its cytosolic (c-state) or matrix (m-state) opened conformations.  相似文献   

6.
The hOCTN1 (human organic cation transporter 1) overexpressed in Escherichia coli and purified by Ni-chelating chromatography has been reconstituted in liposomes by detergent removal with a batch-wise procedure. The reconstitution was optimized with respect to the protein concentration, the detergent/phospholipid ratio and the time of incubation with Amberlite XAD-4 resin. Time-dependent [(14)C]tetraethylammonium, [(3)H]carnitine or [(3)H]ergothioneine uptake was measured in proteoliposomes with activities ratios of 8:1.3:1 respectively. Optimal activity was found at pH 8.0. The transport depended on intraliposomal ATP. [(14)C]tetraethylammonium transport was inhibited by several compounds. The most effective were acetyl-choline and γ-butyrobetaine, followed by acetylcarnitine and tetramethylammonium. Reagents such as pyridoxal 5-phosphate, MTSES [sodium (2-sulfonatoethyl) methanethiosulfonate] and mercurials strongly inhibited the transport. From kinetic analysis of tetraethylammonium transport a K(m) of 0.77 mM was calculated. Acetylcholine and γ-butyrobetaine behaved as competitive inhibitors of TEA (tetraethylammonium) transport with K(i) values of 0.44 and 0.63 mM respectively.  相似文献   

7.
The carnitine transporter was solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite XAD-4. The reconstitution was optimised with respect to the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. The reconstituted carnitine transporter catalysed a first-order antiport reaction (carnitine/carnitine or carnitine/substrate) stimulated by external, not internal, Na+, with a positive cooperativity. Na+ was co-transported with carnitine. Optimal activity was found between pH 5.5 and pH 6.0. The sulfhydryl reagents MTSES, MTSET and mercurials strongly inhibited the transport. Substrate analogues inhibited the transport; the most effective were acylcarnitines and betaine, followed by dimethylglicine, tetraethylammonium and arginine. Besides carnitine, only acylcarnitines and betaine were efficiently translocated. The Km for carnitine on the external and internal side of the transporter was 0.08 and 1.2 mM, respectively. The transporter is asymmetrical and it is unidirectionally inserted into the proteoliposomal membrane with an orientation corresponding to that of the native membrane. The reconstituted carnitine transporter corresponds, very probably, to the OCTN2 protein.  相似文献   

8.
Polyspecific organic cation and anion transporters of the SLC22 protein family are critically involved in absorption and excretion of drugs. To elucidate transport mechanisms, functional and biophysical characterization of purified transporters is required and tertiary structures must be determined. Here, we synthesized rat organic cation transporters OCT1 and OCT2 and rat organic anion transporter OAT1 in a cell free system in the absence of detergent. We solubilized the precipitates with 2% 1-myristoyl-2-hydroxy- sn-glycero-3-[phospho- rac-(1-glycerol)] (LMPG), purified the transporters in the presence of 1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) or octyl glucoside, and reconstituted them into proteoliposomes. From 1 mL reaction vessels 0.13-0.36 mg of transporter proteins was purified. Thus, from five to ten 1 mL reaction vessels sufficient protein for crystallization was obtained. In the presence of 1% LMPG and 0.5% CHAPS, OCT1 and OAT1 formed homo-oligomers but no hetero-oligomers. After reconstitution of OCT1, OCT2, and OAT1 into proteoliposomes, similar Michaelis-Menten K m values were measured for uptake of 1-methyl-4-phenylpyridinium and p-aminohippurate (PAH (-)) by the organic cation and anion transporters, respectively, as after expression of the transporters in cells. Using the reconstituted system, evidence was obtained that OAT1 operates as obligatory and electroneutral PAH (-)/dicarboxylate antiporter and contains a low-affinity chloride binding site that stimulates turnover. PAH (-) uptake was observed only with alpha-ketoglutarate (KG (2-)) on the trans side, and trans-KG (2-) increased the PAH (-) concentration in voltage-clamped proteoliposomes transiently above equilibrium. The V max of PAH (-)/KG (2-) antiport was increased by Cl (-) in a manner independent of gradients, and PAH (-)/KG (2-) antiport was independent of membrane potential in the absence or presence of Cl (-).  相似文献   

9.
The carnitine/acylcarnitine transporter is a transport system whose function is essential for the mitochondrial β-oxidation of fatty acids. Here, the presence of carnitine/acylcarnitine carrier (CACT) in nervous tissue and its sub-cellular localization in dorsal root ganglia (DRG) neurons have been investigated. Western blot analysis using a polyclonal anti-CACT antibody produced in our laboratory revealed the presence of CACT in all the nervous tissue extracts analyzed. Confocal microscopy experiments performed on fixed and permeabilized DRG neurons co-stained with the anti-CACT antibody and the mitochondrial marker MitoTracker Red clearly showed a mitochondrial localization for the carnitine/acylcarnitine transporter. The transport activity of CACT from DRG extracts reconstituted into liposomes was about 50 % in respect to liver extracts. The experimental data here reported represent the first direct evidence of the expression of the carnitine/acylcarnitine transporter in sensory neurons, thus supporting the existence of the β-oxidation pathway in these cells.  相似文献   

10.
The carnitine transporter was solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite XAD-4. The reconstitution was optimised with respect to the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. The reconstituted carnitine transporter catalysed a first-order antiport reaction (carnitine/carnitine or carnitine/substrate) stimulated by external, not internal, Na+, with a positive cooperativity. Na+ was co-transported with carnitine. Optimal activity was found between pH 5.5 and pH 6.0. The sulfhydryl reagents MTSES, MTSET and mercurials strongly inhibited the transport. Substrate analogues inhibited the transport; the most effective were acylcarnitines and betaine, followed by dimethylglicine, tetraethylammonium and arginine. Besides carnitine, only acylcarnitines and betaine were efficiently translocated. The Km for carnitine on the external and internal side of the transporter was 0.08 and 1.2 mM, respectively. The transporter is asymmetrical and it is unidirectionally inserted into the proteoliposomal membrane with an orientation corresponding to that of the native membrane. The reconstituted carnitine transporter corresponds, very probably, to the OCTN2 protein.  相似文献   

11.
The structure/function relationships of charged residues of the human mitochondrial carnitine/acylcarnitine carrier, which are conserved in the carnitine/acylcarnitine carrier subfamily and exposed to the water-filled cavity of carnitine/acylcarnitine carrier in the c-state, have been investigated by site-directed mutagenesis. The mutants were expressed in Escherichia coli, purified and reconstituted in liposomes, and their transport activity was measured as 3H-carnitine/carnitine antiport. The mutants K35A, E132A, D179A and R275A were nearly inactive with transport activities between 5 and 10% of the wild-type carnitine/acylcarnitine carrier. R178A, K234A and D231A showed transport function of about 15% of the wild-type carnitine/acylcarnitine carrier. The substitutions of the other residues with alanine had little or no effect on the carnitine/acylcarnitine carrier activity. Marked changes in the kinetic parameters with three-fold higher Km and lower Vmax values with respect to the wild-type carnitine/acylcarnitine carrier were found when replacing Lys-35, Glu-132, Asp-179 and Arg-275 with alanine. Double mutants exhibited transport activities and kinetic parameters reflecting those of the single mutants; however, lack of D179A activity was partially rescued by the additional mutation R178A. The results provide evidence that Arg-275, Asp-179 and Arg-178, which protrude into the carrier's internal cavity at about the midpoint of the membrane, are the critical binding sites for carnitine. Furthermore, Lys-35 and Glu-132, which are very probably involved in the salt-bridge network located at the bottom of the cavity, play a major role in opening and closing the matrix gate.  相似文献   

12.

Background

Fosfomycin is widely used to treat urinary tract and pediatric gastrointestinal infections of bacteria. It is supposed that this antibiotic enters cells via two transport systems, including the bacterial Glycerol-3-phosphate Transporter (GlpT). Impaired function of GlpT is one mechanism for fosfomycin resistance.

Methods

The interaction of fosfomycin with the recombinant and purified GlpT of Escherichia coli reconstituted in liposomes has been studied. IC50 and the half-saturation constant of the transporter for external fosfomycin (Ki) were determined by transport assay of [14C]glycerol-3-phosphate catalyzed by recombinant GlpT. Efficacy of fosfomycin on growth rates of GlpT defective bacteria strains transformed with recombinant GlpT was measured.

Results

Fosfomycin, externally added to the proteoliposomes, poorly inhibited the glycerol-3-phosphate/glycerol-3-phosphate antiport catalyzed by the reconstituted transporter with an IC50 of 6.4 mM. A kinetic analysis revealed that the inhibition was completely competitive, that is, fosfomycin interacted with the substrate-binding site and the Ki measured was 1.65 mM. Transport assays performed with proteoliposomes containing internal fosfomycin indicate that it was not very well transported by GlpT. Complementation study, performed with GlpT defective bacteria strains, indicated that the fosfomycin resistance, beside deficiency in antibiotic transporter, could be due to other gene defects.

Conclusions

The poor transport observed in a reconstituted system together with the high value of Ki and the results of complementation study well explain the usual high dosage of this drug for the treatment of the urinary tract infections.

General significance

This is the first report regarding functional analysis of interaction between fosfomycin and GlpT.  相似文献   

13.
The carnitine transporter was solubilized from rat liver microsomes with Triton X-100 and reconstituted into liposomes, after addition of Triton X-114, by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite (Bio-Beads SM 2). The reconstitution was optimized with respect to the detergent/phospholipid ratio, the protein concentration, and the number of passages through a single Amberlite column. The reconstituted carnitine transporter catalyzed a first-order uniport reaction inhibited by HgCl2 and DIDS. The IC50 for HgCl2 was 0.16+/-0.03 mM. The reconstituted transporter also catalyzed carnitine efflux from the proteoliposomes; the efflux was stimulated by externally added long-chain acylcarnitines. Besides carnitine, ornithine, arginine, glutamine and lysine were taken up by the reconstituted liposomes with lower efficiency respect to carnitine. Optimal activity was found at pH 8.0. The Km for carnitine on the external side of the transporter was 10.9+/-0.16 mM. The activation energy of the carnitine transport derived by Arrhenius plot was 16.1 kJ/mol.  相似文献   

14.
Adenosine triphosphate (ATP) transporter from rat liver rough endoplasmic reticulum (RER) was solubilized and reconstituted into phosphatidylcholine liposomes. The RER proteoliposomes, resulting from optimizing some reconstitution parameters, had an apparent K(m) value of 1.5 microM and a V(max) of 286 pmol min(-1) (mg protein)(-1) and showed higher affinity for ATP and a lower V(max) value than intact RER (K(m) of 6.5 microM and V(max) of 1 nmol). ATP transport was time- and temperature-dependent, inhibited by 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid, which is known as an inhibitor of anion transporters including ATP transporter, but was not affected by atractyloside, a specific inhibitor of mitochondrial ADP/ATP carrier. The internal and external effects of various nucleotides on the ATP transport were examined. ATP transport was cis-inhibited strongly by ADP and weakly by AMP. ADP-preloaded RER proteoliposomes showed a specific increase of ATP transport activity while AMP-preloaded RER proteoliposomes did not show the enhanced overshoot peak in the ATP uptake plot. These results demonstrate the ADP/ATP antiport mechanism of ATP transport in rat liver RER.  相似文献   

15.
The glutamine/amino acid transporter solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes has been previously identified as the ASCT2 transporter. The reconstituted transporter catalyses an antiport reaction in which external glutamine and Na+ are cotransported in exchange with internal glutamine (or other amino acids). The glutamine-Na+ cotransport occurred with a 1:1 stoichiometry. The concentration of Na+ did not influence the Km for glutamine and vice versa. Experimental data obtained by a bi-substrate analysis of the glutamine-Na+ cotransport, together with previous report on the glutamine(ex)/glutamine(in) pseudo bi-reactant analysis, indicated that the transporter catalyses a three-substrate transport reaction with a random simultaneous mechanism. The presence of ATP in the internal compartment of the proteoliposomes led to an increase of the Vmax of the transport and to a decrease of the Km of the transporter for external Na+. The reconstituted glutamine/amino acid transporter was inhibited by glutamate; the inhibition was more pronounced at acidic pH. A kinetic analysis revealed that the inhibition was competitive with respect to glutamine. Glutamate was also transported in exchange with glutamine. The external Km of the transporter for glutamate (13.3 mM) was slightly higher than the internal one (8.3 mM). At acidic pH the external but not the internal Km decreased. According with the Km values, glutamate should be transported preferentially from inside to outside in exchange for external glutamine and Na+.  相似文献   

16.
The role of hydrophobic residues of the mitochondrial carnitine/acylcarnitine carrier (CAC) in the inhibition by acylcarnitines has been investigated by site-directed mutagenesis. According to the homology model of CAC in cytosolic opened conformation (c-state), L14, G17, G21, V25, P78, V82, M85, C89, F93, A276, A279, C283, F287 are located in the 1st (H1), 2nd (H2) and 6th (H6) transmembrane α-helices and exposed in the central cavity, forming a hydrophobic half shell. These residues have been substituted with A (or G) and in some cases with M. Mutants have been assayed for transport activity measured as [(3)H]carnitine/carnitine antiport in proteoliposomes. With the exception of G17A and G21M, mutants exhibited activity from 20% to 100% of WT. Among the active mutants only G21A, V25M, P78A and P78M showed Vmax lower than half and/or Km more than two fold respect to WT. Acylcarnitines competitively inhibited carnitine antiport. The extent of inhibition of the mutants by acylcarnitines with acyl chain length of 2, 4, 8, 12, 14 and 16 has been compared with the WT. V25A, P78A, P78M and A279G showed reduced extent of inhibition by all the acylcarnitines; V25M showed reduced inhibition by shorter acylcarnitines; V82A, V82M, M85A, C89A and A276G showed reduced inhibition by longer acylcarnitines, respect to WT. C283A showed increased extent of inhibition by acylcarnitines. Variations of Ki of mutants for acylcarnitines reflected variations of the inhibition profiles. The data demonstrated that V25, P78, V82, M85 and C89 are involved in the acyl chain binding to the CAC in c-state.  相似文献   

17.
We previously described the [(3)H]cGMP-binding characteristics of a CHAPS-solubilized protein that we proposed to be a cGMP transporter. We now report the ATPase activity of the membrane-bound, solubilized and reconstituted form of a cGMP transporter. The membrane-bound protein of unsealed ghosts had a linear ATPase activity over a 120 min incubation period with optimal activity of about 400 pmol/mg/min. The apparent K(m) and V(max) for ATP were about 0.5 mM and 300 pmol/mg/min, respectively. When solubilized with CHAPS the specific activity of the protein was reduced to about 70 pmol/mg/min. Reconstitution of the CHAPS preparation into phospholipid bilayer using rapid detergent removal by Extracti-gel column resulted in proteoliposomes which had ATPase activity similar to that found in the erythrocyte membranes. The proteoliposomes displayed a linear ATP-dependent uptake of [(3)H]cGMP with an apparent K(m) value of 1. 0 microM. This low K(m)-uptake of [(3)H]cGMP in proteoliposomes was not affected by 10 microM of AMP, cAMP and GMP, but was completely abolished in the presence of the non-hydrolyzable ATP analogue, ATP-gamma-S. Some ATPase activation was also observed in the presence of 2 microM cAMP, but it is unclear whether this activity was coupled to the cGMP transporter. Our results show that the membrane protein responsible for cGMP transport has an ATPase activity and transports the cyclic nucleotide in the presence of ATP.  相似文献   

18.
The glutamine/amino acid transporter solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes has been previously identified as the ASCT2 transporter. The reconstituted transporter catalyses an antiport reaction in which external glutamine and Na+ are cotransported in exchange with internal glutamine (or other amino acids). The glutamine-Na+ cotransport occurred with a 1:1 stoichiometry. The concentration of Na+ did not influence the Km for glutamine and vice versa. Experimental data obtained by a bi-substrate analysis of the glutamine-Na+ cotransport, together with previous report on the glutamineex/glutaminein pseudo bi-reactant analysis, indicated that the transporter catalyses a three-substrate transport reaction with a random simultaneous mechanism. The presence of ATP in the internal compartment of the proteoliposomes led to an increase of the Vmax of the transport and to a decrease of the Km of the transporter for external Na+. The reconstituted glutamine/amino acid transporter was inhibited by glutamate; the inhibition was more pronounced at acidic pH. A kinetic analysis revealed that the inhibition was competitive with respect to glutamine. Glutamate was also transported in exchange with glutamine. The external Km of the transporter for glutamate (13.3 mM) was slightly higher than the internal one (8.3 mM). At acidic pH the external but not the internal Km decreased. According with the Km values, glutamate should be transported preferentially from inside to outside in exchange for external glutamine and Na+.  相似文献   

19.
The carnitine transporter was solubilized from rat liver microsomes with Triton X-100 and reconstituted into liposomes, after addition of Triton X-114, by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite (Bio-Beads SM 2). The reconstitution was optimized with respect to the detergent/phospholipid ratio, the protein concentration, and the number of passages through a single Amberlite column. The reconstituted carnitine transporter catalyzed a first-order uniport reaction inhibited by HgCl2 and DIDS. The IC50 for HgCl2 was 0.16 ± 0.03 mM. The reconstituted transporter also catalyzed carnitine efflux from the proteoliposomes; the efflux was stimulated by externally added long-chain acylcarnitines. Besides carnitine, ornithine, arginine, glutamine and lysine were taken up by the reconstituted liposomes with lower efficiency respect to carnitine. Optimal activity was found at pH 8.0. The Km for carnitine on the external side of the transporter was 10.9 ± 0.16 mM. The activation energy of the carnitine transport derived by Arrhenius plot was 16.1 kJ/mol.  相似文献   

20.
The glutamine/amino acid transporter was solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite XAD-4. The reconstitution was optimised with respect to the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. The reconstituted glutamine/amino acid transporter catalysed a first-order antiport reaction stimulated by external, not internal, Na+. Optimal activity was found at pH 7.0. The sulfhydryl reagents HgCl2, mersalyl and p-hydroxymercuribenzoate and the amino acids alanine, serine, threonine, cysteine, asparagine, methionine and valine strongly inhibited the transport, whereas the amino acid analogue methylaminoisobutyrate had no effect. Glutamine, alanine, serine, asparagine, threonine were efficiently translocated from outside to inside and from inside to outside the proteoliposomes as well. Cysteine and valine were translocated preferentially from outside to inside. The Km for glutamine on the external and internal side of the transporter was 0.47 and 11 mM, respectively; the values were not influenced by the type of the counter substrate. The transporter is functionally asymmetrical and it is unidirectionally inserted into the proteoliposomal membrane with an orientation corresponding to that of the native membrane. By a bisubstrate kinetic analysis of the glutamine antiport, a random simultaneous mechanism was found. The glutamine antiport was strongly stimulated by internal nucleoside triphosphates and, to a lower extent, by pyrophoshate. The reconstituted glutamine/amino acid transporter functionally corresponds to the ASCT2 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号