首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Yeast cells permeabilized by freeze-thaw cycles in a sorbitol-containing medium provide an experimentally favorable system for the study of ribonucleotide reduction in a small number of cells or in mutant strains. Ribonucleotide reductase activities determined in such cells are about twice those found in cell extracts but properties of the enzyme, except pH optimum, are closely comparable in both assay procedures. In contrast with other organisms, the activities measured in permeabilized cells from both diploid or haploid strains exceed the demand for deoxyribonucleotide formation during replication of the yeast genome. The method has been applied to yeast cultures growing in the presence of the ribonucleotide reductase inhibitor hydroxyurea and a twofold increase of enzyme activity has been established in such cells. On the other hand, analysis of a series of hus mutants, selected for hydroxyurea sensitivity in the laboratory of Singer and Johnston did not reveal obvious alterations of the enzyme vs the parental strains, suggesting that the hus phenotype may be due to lesions other than in ribonucleotide reductase.  相似文献   

4.
Baker's yeast (Saccharomyces cerevisiae) has been genetically engineered to ferment the pentose sugar xylose present in lignocellulose biomass. One of the reactions controlling the rate of xylose utilization is catalyzed by xylose reductase (XR). In particular, the cofactor specificity of XR is not optimized with respect to the downstream pathway, and the reaction rate is insufficient for high xylose utilization in S. cerevisiae. The current study describes a novel approach to improve XR for ethanol production in S. cerevisiae. The cofactor binding region of XR was mutated by error-prone PCR, and the resulting library was expressed in S. cerevisiae. The S. cerevisiae library expressing the mutant XR was selected in sequential anaerobic batch cultivation. At the end of the selection process, a strain (TMB 3420) harboring the XR mutations N272D and P275Q was enriched from the library. The V(max) of the mutated enzyme was increased by an order of magnitude compared to that of the native enzyme, and the NADH/NADPH utilization ratio was increased significantly. The ethanol productivity from xylose in TMB 3420 was increased ~40 times compared to that of the parent strain (0.32 g/g [dry weight {DW}] × h versus 0.007 g/g [DW] × h), and the anaerobic growth rate was increased from ~0 h(-1) to 0.08 h(-1). The improved traits of TMB 3420 were readily transferred to the parent strain by reverse engineering of the mutated XR gene. Since integrative vectors were employed in the construction of the library, transfer of the improved phenotype does not require multicopy expression from episomal plasmids.  相似文献   

5.
Summary Nikkomycin Z (NZ) is a competitive inhibitor of chitin synthase III in the yeast Saccharomyces cerevisiae. Myosin type II-deficient yeast strains (myo1) display a dramatic reduction in growth when chitin synthase III activity is inhibited by NZ, supporting the contention that actomyosin motility plays an important role in maintaining cell wall integrity. A proposed inhibitor of cortical actin polymerization in vitro, 2,3-butanedione monoxime (BDM), also inhibits growth of wild-type yeast strains at a concentration of 20 mM. In this study, we assayed for potential in vivo interplay between BDM-sensitive cell functions and cell wall chitin synthesis by testing for increased sensitivity to NZ during co-treatment with BDM at sub-inhibitory concentrations. Our results show that BDM can increase the sensitivity of yeast cells to Nikkomycin Z.  相似文献   

6.
7.
8.
9.
Relationships between amino acid auxotrophy and N-dodecyloxy-carboxy-methyl-N-N-N-trimethyl ammonium chloride (IM) sensitivity have been investigated in isogenic yeast strains Saccharomyces cerevisiae and their meiotic segregants. It has been found, that auxotrophy increases the level of sensitivity to this salt markedly. A gene conferring resistance to that drug cancels the auxotrophy-dependent sensitivity.  相似文献   

10.
Ribonucleotide reductase, the central enzyme of DNA precursor biosynthesis, has been isolated and characterized from baker's yeast. The enzyme activity, measured in extracts from three different, exponentially growing yeast strains, is high enough to meet the substrate requirement of DNA replication, in contrast to very low activities found in most other organisms. In thymidylate-permeable yeast cells ribonucleotide reductase activity is stimulated under both starvation and excess of intracellular dTMP. On the other hand growth of yeast in presence of 20 mM hydroxyurea did not increase enzyme activity. Yeast ribonucleotide reductase is composed of two non-identical subunits, inactive separately, of which one binds to immobilized dATP. The relative molecular mass of the holoenzyme is about 250 000. The enzyme reduces all four natural ribonucleoside diphosphates with comparable efficacy. GDP reduction requires dTTP as effector, ADP reduction is stimulated by dGTP, whereas pyrimidine nucleotide reduction is stimulated by any deoxyribonucleotide and ATP. Enzyme activity is independent of exogenous metal ions and is insensitive towards chelating agents. Hydroxyurea inactivates yeast ribonucleotide reductase in a slow reaction; half-inhibition (I50) is reached only at 2-6 mM hydroxyurea concentration. Up to 50% reactivation occurs spontaneously after removal of the inhibitor. In accord with previous attempts by others, extensive purification of the yeast enzyme has failed owing to its extreme instability in solution; the half-life of about 11 h could not be influenced by any protective measure. Taken together, yeast ribonucleotide reductase combines features known from Escherichia coli and mammalian enzymes with differing, individual properties.  相似文献   

11.
Ribonucleotide reductase is responsible for providing the deoxyribonucleotide precursors for DNA synthesis. In most species the enzyme consists of a large and a small subunit, both of which are required for activity. In mammalian cells, the small subunit is the site of action of several antitumor agents, including hydroxyurea and 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone (MAIQ). The mRNA levels for the small subunit of ribonucleotide reductase (RNR2) and sensitivity to hydroxyurea and MAIQ were determined in four strains of the yeast, Saccharomyces cerevisiae. Two strains exhibited significantly different sensitivities to both hydroxyurea and MAIQ, which closely correlated with differences in the levels of RNR2 mRNA. These results are consistent with recent observations with mammalian cells in culture, and indicate that a common mechanism of resistance to hydroxyurea and related drugs occurs through the elevation in ribonucleotide reductase message levels. A transplason mutagenized strain with marked structural modifications in RNR2 DNA and mRNA showed an extreme hypersensitivity to hydroxyurea but not to MAIQ, providing evidence that the two drugs do not inhibit the RNR2 subunit by the same mechanism. In addition, a yeast strain isolated for low but reproducible resistance to MAIQ exhibited a sensitivity to hydroxyurea similar to the parental wild-type strain, supporting the idea that the two drugs inhibit the activity of RNR2 by unique mechanisms. These yeast strains provide a useful approach for further studies into the regulation of eucaryotic ribonucleotide reduction and drug resistance mechanism involving a key rate-limiting step in DNA synthesis.  相似文献   

12.
Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14 alpha-demethylase. Resistance is restored through complementation by the plasmid-borne wild type gene from either S. cerevisiae or Candida tropicalis. Neither Southern hybridization nor Western immunoblot techniques provided evidence for a second NADPH-cytochrome P450 reductase gene, suggesting that an alternate pathway may provide for the functions of this reductase in S. cerevisiae.  相似文献   

13.
The class I ribonucleotide reductases (RNRs) are composed of two homodimeric subunits: R1 and R2. R2 houses a diferric-tyrosyl radical (Y*) cofactor. Saccharomyces cerevisiae has two R2s: Y2 (beta2) and Y4 (beta'2). Y4 is an unusual R2 because three residues required for iron binding have been mutated. While the heterodimer (betabeta') is thought to be the active form, several rnr4delta strains are viable. To resolve this paradox, N-terminally epitope-tagged beta and beta' were expressed in E. coli or integrated into the yeast genome. In vitro exchange studies reveal that when apo-(His6)-beta2 ((His)beta2) is mixed with beta'2, apo-(His)betabeta' forms quantitatively within 2 min. In contrast, holo-betabeta' fails to exchange with apo-(His)beta2 to form holo-(His)betabeta and beta'2. Isolation of genomically encoded tagged beta or beta' from yeast extracts gave a 1:1 complex of beta and beta', suggesting that betabeta' is the active form. The catalytic activity, protein concentrations, and Y* content of the rnr4delta and wild type (wt) strains were compared to clarify the role of beta' in vivo. The Y* content of rnr4delta is 15-fold less than that of wt, consistent with the observed low activity of rnr4delta extracts (<0.01 nmol min(-1) mg(-1)) versus wt (0.06 +/- 0.01 nmol min(-1) mg(-1)). (FLAG)beta2 isolated from the rnr4delta strain has a specific activity of 2 nmol min(-1) mg(-1), similar to that of reconstituted apo-(His)beta2 (10 nmol min(-1) mg(-1)), but significantly less than holo-(His)betabeta' (approximately 2000 nmol min(-1) mg(-1)). These studies together demonstrate that beta' plays a crucial role in cluster assembly in vitro and in vivo and that the active form of the yeast R2 is betabeta'.  相似文献   

14.
An X  Zhang Z  Yang K  Huang M 《Genetics》2006,173(1):63-73
Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in de novo deoxyribonucleotide biosynthesis and is essential in DNA replication and repair. Cells have evolved complex mechanisms to modulate RNR activity during normal cell cycle progression and in response to genotoxic stress. A recently characterized mode of RNR regulation is DNA damage-induced RNR subunit redistribution. The RNR holoenzyme consists of a large subunit, R1, and a small subunit, R2. The Saccharomyces cerevisiae R2 is an Rnr2:Rnr4 heterodimer. Rnr2 generates a diferric-tyrosyl radical cofactor required for catalysis; Rnr4 facilitates cofactor assembly and stabilizes the resulting holo-heterodimer. Upon DNA damage, Rnr2 and Rnr4 undergo checkpoint-dependent, nucleus-to-cytoplasm redistribution, resulting in colocalization of R1 and R2. Here we present evidence that Rnr2 and Rnr4 are transported between the nucleus and the cytoplasm as one protein complex. Tagging either Rnr2 or Rnr4 with a nuclear export sequence causes cytoplasmic localization of both proteins. Moreover, mutations at the Rnr2:Rnr4 heterodimer interface can affect the localization of both proteins without disrupting the heterodimeric complex. Finally, the relocalization of Rnr4 appears to involve both active export and blockage of nuclear import. Our findings provide new insights into the mechanism of DNA damage-induced RNR subunit redistribution.  相似文献   

15.
He X  Zhang B  Tan H 《Biotechnology letters》2003,25(10):773-778
Three plasmids, pHX4, pHXA4 and pHXC4, containing sterol C-24(28) reductase gene (ERG4) under the control of ERG4, ADH1 or CUP1 promoters, respectively, and the copper resistance gene as the selection marker were constructed, and they were then introduced into Saccharomyces cerevisiae. Ergosterol production in recombinant strains was enhanced. Under the optimal culture condition, ergosterol content in recombinant strains YEH56(pHX4), YEH56(pHXA4) and YEH56(pHXC4) was 1.2, 1.4 and 1.5-fold (47 mg g–1) of that in the original strain.  相似文献   

16.
An in vitro assay for delta14-sterol reductase from yeast was developed, using ergosta-8,14-dien-3beta-ol as the substrate. The kinetics and localization of the enzyme were examined. The inhibition of the enzyme by the antimycotic agent, 15-azasterol, was verified.  相似文献   

17.
18.
Cyclic variation in mutation induction and lethality was found following X-irradiation during meiosis in Saccharomyces cerevisiae. An enhanced mutagenic response was found in meiotic G1 phase cells in comparison to cells later in meiosis, similar to the response shown during mitosis, but meiotic G1 phase cells appeared more resistant to the lethal effects of X-irradiation than mitotic G1 phase cells. Resistance to the lethal effects of X-rays was found during meiotic DNA synthesis in the strain SK1, which may indicate the operation of a sister-chromatid exchange repair mechanism. A difference was found between gene conversion which appeared to be at a maximum by the end of meiotic DNA synthesis and reciprocal recombination, which could be induced up to prophase I.  相似文献   

19.
Unheated and heat-stressed Saccharomyces cerevisiae cells were examined for their relative sensitivities to butylated hydroxyanisole (BHA), tertiary butylhydroquinone (TBHQ), and propyl gallate. Heated cells had significant (P less than or equal to 0.05) increases in sensitivity to 50 micrograms of BHA, 100 micrograms of TBHQ, and 1,000 micrograms of propyl gallate per ml as compared with unheated cells when surface plated on antioxidant-supplemented recovery agar. The rate of increase in size of colonies developed by heated cells was slower than that of unheated cells, and the presence of antioxidants in recovery agar enhanced this effect. Heat-stressed cells also had increased sensitivity to ethanol. Incubation temperatures of 15, 21, 30, and 37 degrees C for enumerating unheated cells had no significant effect on the numbers of colonies formed on unsupplemented recovery agar; however, incorporation of 100 micrograms of BHA, 200 micrograms of TBHQ, or 1,000 micrograms of propyl gallate per ml into agar resulted in significant decreases in the number of colonies formed by heated cells at various incubation temperatures. The detrimental effects of TBHQ and propyl gallate on repair of heat-injured cells are apparently expressed at a temperature higher than that observed for BHA. It is suggested that the adverse effects of antioxidants on repair of heat-injured S. cerevisiae cells may be associated with oxygen availability.  相似文献   

20.
Human methylenetetrahydrofolate reductase (MTHFR, EC 1.5.1.20) catalyzes the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. 5-Methyltetrahydrofolate is a major methyl donor in the remethylation of homocysteine to methionine. Impaired MTHFR can cause high levels of homocysteine in plasma, which is an independent risk factor for vascular disease and neural tube defects. We have functionally characterized wild-type and several mutant alleles of human MTHFR in yeast, Saccharomyces cerevisiae. We have shown that yeast MET11 is a functional homologue of human MTHFR. Expression of the human MTHFR cDNA in a yeast strain deleted for MET11 can restore the strain's MTHFR activity in vitro and complement its methionine auxotrophic phenotype in vivo. To understand the domain structure of human MTHFR, we have truncated the C terminus (50%) of the protein and demonstrated that expressing an N-terminal human MTHFR in met11(-) yeast cells rescues the growth phenotype, indicating that this region contains the catalytic domain of the enzyme. However, the truncation leads to the reduced protein levels, suggesting that the C terminus may be important for protein stabilization. We have also functionally characterized four missense mutations identified from patients with severe MTHFR deficiency and two common missense polymorphisms found at high frequency in the general population. Three of the four missense mutations are unable to complement the auxotrophic phenotype of met11(-) yeast cells and show less than 7% enzyme activity of the wild type in vitro. Both of the two common polymorphisms are able to complement the growth phenotype, although one exhibited thermolabile enzyme activity in vitro. These results shall be useful for the functional characterization of MTHFR mutations and analysis structure/function relationship of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号