首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

Comparison of metabolic networks is typically performed based on the organisms' enzyme contents. This approach disregards functional replacements as well as orthologies that are misannotated. Direct comparison of the structure of metabolic networks can circumvent these problems.  相似文献   

2.
Kinetic models of metabolic networks are essential for predicting and optimizing the transient behavior of cells in culture. However, such models are inherently high dimensional and stiff due to the large number of species and reactions involved and to kinetic rate constants of widely different orders of magnitude. In this paper we address the problem of deriving non-stiff, reduced-order non-linear models of the dominant dynamics of metabolic networks with fast and slow reactions. We present a method, based on singular perturbation analysis, which allows the systematic identification of quasi-steady-state conditions for the fast reactions, and the derivation of explicit non-linear models of the slow dynamics independent of the fast reaction rate expressions. The method is successfully applied to detailed models of metabolism in human erythrocytes and Saccharomyces cerevisiae.  相似文献   

3.
Systems neuroscience traditionally conceptualizes a population of spiking neurons as merely encoding the value of a stimulus. Yet, psychophysics has revealed that people take into account stimulus uncertainty when performing sensory or motor computations and do so in a nearly Bayes-optimal way. This suggests that neural populations do not encode just a single value but an entire probability distribution over the stimulus. Several such probabilistic codes have been proposed, including one that utilizes the structure of neural variability to enable simple neural implementations of probabilistic computations such as optimal cue integration. This approach provides a quantitative link between Bayes-optimal behaviors and specific neural operations. It allows for novel ways to evaluate probabilistic codes and for predictions for physiological population recordings.  相似文献   

4.
5.
Substrate competition can be found in many types of biological processes, ranging from gene expression to signal transduction and metabolic pathways. Although several experimental and in silico studies have shown the impact of substrate competition on these processes, it is still often neglected, especially in modelling approaches. Using toy models that exemplify different metabolic pathway scenarios, we show that substrate competition can influence the dynamics and the steady state concentrations of a metabolic pathway. We have additionally derived rate laws for substrate competition in reversible reactions and summarise existing rate laws for substrate competition in irreversible reactions.  相似文献   

6.

Background  

The inference of a genetic network is a problem in which mutual interactions among genes are deduced using time-series of gene expression patterns. While a number of models have been proposed to describe genetic regulatory networks, this study focuses on a set of differential equations since it has the ability to model dynamic behavior of gene expression. When we use a set of differential equations to describe genetic networks, the inference problem can be defined as a function approximation problem. On the basis of this problem definition, we propose in this study a new method to infer reduced NGnet models of genetic networks.  相似文献   

7.
8.
9.

Background  

Inference of protein interaction networks from various sources of data has become an important topic of both systems and computational biology. Here we present a supervised approach to identification of gene expression regulatory networks.  相似文献   

10.
An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows ("explaining away") and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons.  相似文献   

11.
Bayesian multimodel inference for geostatistical regression models   总被引:2,自引:0,他引:2  
Johnson DS  Hoeting JA 《PloS one》2011,6(11):e25677
The problem of simultaneous covariate selection and parameter inference for spatial regression models is considered. Previous research has shown that failure to take spatial correlation into account can influence the outcome of standard model selection methods. A Markov chain Monte Carlo (MCMC) method is investigated for the calculation of parameter estimates and posterior model probabilities for spatial regression models. The method can accommodate normal and non-normal response data and a large number of covariates. Thus the method is very flexible and can be used to fit spatial linear models, spatial linear mixed models, and spatial generalized linear mixed models (GLMMs). The Bayesian MCMC method also allows a priori unequal weighting of covariates, which is not possible with many model selection methods such as Akaike's information criterion (AIC). The proposed method is demonstrated on two data sets. The first is the whiptail lizard data set which has been previously analyzed by other researchers investigating model selection methods. Our results confirmed the previous analysis suggesting that sandy soil and ant abundance were strongly associated with lizard abundance. The second data set concerned pollution tolerant fish abundance in relation to several environmental factors. Results indicate that abundance is positively related to Strahler stream order and a habitat quality index. Abundance is negatively related to percent watershed disturbance.  相似文献   

12.

Background  

The increasing availability of models and data for metabolic networks poses new challenges in what concerns optimization for biological systems. Due to the high level of complexity and uncertainty associated to these networks the suggested models often lack detail and liability, required to determine the proper optimization strategies. A possible approach to overcome this limitation is the combination of both kinetic and stoichiometric models. In this paper three control optimization methods, with different levels of complexity and assuming various degrees of process information, are presented and their results compared using a prototype network.  相似文献   

13.
Hamilton JJ  Reed JL 《PloS one》2012,7(4):e34670
Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here.  相似文献   

14.
15.
Friel  Nial; Rue  Havard 《Biometrika》2007,94(3):661-672
We illustrate how the recursive algorithm of Reeves & Pettitt(2004) for general factorizable models can be extended to allowexact sampling, maximization of distributions and computationof marginal distributions. All of the methods we describe applyto discrete-valued Markov random fields with nearest neighbourintegrations defined on regular lattices; in particular we illustratethat exact inference can be performed for hidden autologisticmodels defined on moderately sized lattices. In this contextwe offer an extension of this methodology which allows approximateinference to be carried out for larger lattices without resortingto simulation techniques such as Markov chain Monte Carlo. Inparticular our work offers the basis for an automatic inferencemachine for such models.  相似文献   

16.
17.
Gene flow estimation is essential for characterizing local adaptation, speciation potential and connectivity among threatened populations. New model-based population genetic methods can resolve complex demographic histories, but many studies in fields such as landscape genetics continue to rely on simple rules of thumb focused on gene flow to explain patterns of spatial differentiation. Here, we show how methods that use gene genealogies can reveal cryptic demographic histories and provide better estimates of gene flow with other parameters that contribute to genetic variation across landscapes and seascapes. We advocate for the expanded use and development of methods that consider spatial differentiation as the product of multiple forces interacting over time, and caution against a routine reliance on post-hoc gene flow interpretations.  相似文献   

18.
Pairwise likelihood methods for inference in image models   总被引:3,自引:0,他引:3  
Nott  DJ; Ryden  T 《Biometrika》1999,86(3):661-676
  相似文献   

19.
Efficient Bayesian inference for Gaussian copula regression models   总被引:4,自引:0,他引:4  
  相似文献   

20.
Sexually-transmitted diseases (STDs) constitute a major public health concern. Mathematical models for the transmission dynamics of STDs indicate that heterogeneity in sexual activity level allow them to persist even when the typical behavior of the population would not support endemicity. This insight focuses attention on the distribution of sexual activity level in a population. In this paper, we develop several stochastic process models for the formation of sexual partnership networks. Using likelihood-based model selection procedures, we assess the fit of the different models to three large distributions of sexual partner counts: (1) Rakai, Uganda, (2) Sweden, and (3) the USA. Five of the six single-sex networks were fit best by the negative binomial model. The American women's network was best fit by a power-law model, the Yule. For most networks, several competing models fit approximately equally well. These results suggest three conclusions: (1) no single unitary process clearly underlies the formation of these sexual networks, (2) behavioral heterogeneity plays an essential role in network structure, (3) substantial model uncertainty exists for sexual network degree distributions. Behavioral research focused on the mechanisms of partnership formation will play an essential role in specifying the best model for empirical degree distributions. We discuss the limitations of inferences from such data, and the utility of degree-based epidemiological models more generally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号