首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We proposed a spatially extended model of early events of B cell receptors (BCR) activation, which is based on mutual kinase-receptor interactions that are characteristic for the immune receptors and the Src family kinases. These interactions lead to the positive feedback which, together with two nonlinearities resulting from the double phosphorylation of receptors and Michaelis-Menten dephosphorylation kinetics, are responsible for the system bistability. We demonstrated that B cell can be activated by a formation of a tiny cluster of receptors or displacement of the nucleus. The receptors and Src kinases are activated, first locally, in the locus of the receptor cluster or the region where the cytoplasm is the thinnest. Then the traveling wave of activation propagates until activity spreads over the whole cell membrane. In the models in which we assume that the kinases are free to diffuse in the cytoplasm, we found that the fraction of aggregated receptors, capable to initiate B cell activation decreases with the decreasing thickness of cytoplasm and decreasing kinase diffusion. When kinases are restricted to the cell membrane - which is the case for most of the Src family kinases - even a cluster consisting of a tiny fraction of total receptors becomes activatory. Interestingly, the system remains insensitive to the modest changes of total receptor level. The model provides a plausible mechanism of B cells activation due to the formation of small receptors clusters collocalized by binding of polyvalent antigens or arising during the immune synapse formation.  相似文献   

2.
Luteinizing hormone (LH) and human chorionic gonadotrophin (hCG) receptors are coupled to intracellular effector systems, most notably adenylate cyclase, through guanyl nucleotide-binding proteins or G-proteins. The molecular mechanism involved in the dynamic coupling of the LH/hCG receptor however, are not known. It has been postulated that receptor aggregation at the molecular level plays a critical role in this process. There have been attempts to understand the receptor association and dissociation phenomena at the molecular level. One of them involves the participation of the major histocompatibility complex (MHC) class I antigen in the mechanism of receptor activation and/or expression. One molecular basis for these mechanisms consists of a physical interaction between MHC proteins and receptors to form "compound receptors" able to transfer a hormonal signal to the cell. Using a photo-reactive probe we demonstrated that the LH/hCG receptors and the class I antigens are closely associated in the membrane. Thus, it is possible to form covalent complexes of hCG and class I antigens through the binding of the hormone to specific receptors. These findings imply that LH/hCG receptors and the MHC class I antigens may interact at the level of the plasma membrane in the mechanism of LH action. We also performed experiments using a single cell and limiting stimulation to a patch of membrane. The results stimulating the cell in a localized area suggested that even if all components are entirely free to float there is a constraint in the localization of the receptor, G-protein, and/or the effector, supporting the constraint dissociation model. Within a limited area subunits could dissociate, but they would not be free to diffuse throughout the membrane. Moreover the concept of compartmentalization that has been utilized to explain some inconsistencies in second-messenger action now can be proved by experimental design.  相似文献   

3.
The interaction between a T cell and an antigen-presenting cell (APC) can trigger a signaling response that leads to T cell activation. Prior studies have shown that ligation of the T cell receptor (TCR) triggers a signaling cascade that proceeds through the coalescence of TCR and various signaling molecules (e.g., the kinase Lck and adaptor protein LAT [linker for T cell activation]) into microdomains on the plasma membrane. In this study, we investigated another ligand–receptor interaction (CD58–CD2) that facilities T cell activation using a model system consisting of Jurkat T cells interacting with a planar lipid bilayer that mimics an APC. We show that the binding of CD58 to CD2, in the absence of TCR activation, also induces signaling through the actin-dependent coalescence of signaling molecules (including TCR-ζ chain, Lck, and LAT) into microdomains. When simultaneously activated, TCR and CD2 initially colocalize in small microdomains but then partition into separate zones; this spatial segregation may enable the two receptors to enhance signaling synergistically. Our results show that two structurally distinct receptors both induce a rapid spatial reorganization of molecules in the plasma membrane, suggesting a model for how local increases in the concentration of signaling molecules can trigger T cell signaling.  相似文献   

4.
Met and EGF receptors can induce a decrease in intercellular adhesion and an increase in cell motility, which is a cause of metastatic progressions. Therefore, mechanisms of interaction in receptor tyrosine kinase and proteins of intercellular contacts attract the attention of researchers. The main protein that provides cellular adhesion is E-cadherin. Earlier, we have shown that the intracellular Met localization was dependent on function of E-cadherin. In the present work, we have found that localization of the EGF receptor also was determined by adhesion stability. Loss of intercellular contacts in HBL-100 cells leads to the EGF receptor being not stabilized at the cell membrane. A comparative study of MAP kinase activation by growth factors was carried out in cells differing by their intercellular adhesion states. It has been established that E-cadherin is able to modulate level and duration of activation of ERK kinase. The presented results allow for the suggestion to be made that not only intracellular localization, but also the intracellular signal pathway activated by Met and EGF receptors, depend on the E-cadherin function, which in turn can determine the specificity of cellular response.  相似文献   

5.
GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. The dynamic control of the cell surface stability of GABA(B) receptors is likely to be of fundamental importance in the modulation of receptor signaling. Presently, however, this process is poorly understood. Here we demonstrate that GABA(B) receptors are remarkably stable at the plasma membrane showing little basal endocytosis in cultured cortical and hippocampal neurons. In addition, we show that exposure to baclofen, a well characterized GABA(B) receptor agonist, fails to enhance GABA(B) receptor endocytosis. Lack of receptor internalization in neurons correlates with an absence of agonist-induced phosphorylation and lack of arrestin recruitment in heterologous systems. We also demonstrate that chronic exposure to baclofen selectively promotes endocytosis-independent GABA(B) receptor degradation. The effect of baclofen can be attenuated by activation of cAMP-dependent protein kinase or co-stimulation of beta-adrenergic receptors. Furthermore, we show that increased degradation rates are correlated with reduced receptor phosphorylation at serine 892 in GABA(B)R2. Our results support a model in which GABA(B)R2 phosphorylation specifically stabilizes surface GABA(B) receptors in neurons. We propose that signaling pathways that regulate cAMP levels in neurons may have profound effects on the tonic synaptic inhibition by modulating the availability of GABA(B) receptors.  相似文献   

6.
Regulated activation of the highly conserved Ras GTPase is a central event in the stimulation of cell proliferation, motility, and differentiation elicited by receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR). In fibroblasts, this involves formation and membrane localization of Shc.Grb2.Sos complexes, which increases the rate of Ras guanine nucleotide exchange. In order to control Ras-mediated cell responses, this activity is regulated by receptor down-regulation and a feedback loop involving the dual specificity kinase mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK). We investigated the role of EGFR endocytosis in the regulation of Ras activation. Of fundamental interest is whether activated receptors in endosomes can participate in the stimulation of Ras guanine nucleotide exchange, because the constitutive membrane localization of Ras may affect its compartmentalization. By exploiting the differences in postendocytic signaling of two EGFR ligands, epidermal growth factor and transforming growth factor-alpha, we found that activated EGFR located at the cell surface and in internal compartments contribute equally to the membrane recruitment and tyrosine phosphorylation of Shc in NR6 fibroblasts expressing wild-type EGFR. Importantly, both the rate of Ras-specific guanine nucleotide exchange and the level of Ras-GTP were depressed to near basal values on the time scale of receptor trafficking. Using the selective MEK inhibitor PD098059, we were able to block the feedback desensitization pathway and maintain activation of Ras. Under these conditions, the generation of Ras-GTP was not significantly affected by the subcellular location of activated EGFR. In conjunction with our previous analysis of the phospholipase C pathway in the same cell line, this suggests a selective continuation of specific signaling activities and cessation of others upon receptor endocytosis.  相似文献   

7.
Phospholipid scramblase (PLSCR1) is a multiply palmitoylated, calcium-binding endofacial membrane protein proposed to mediate transbilayer movement of plasma membrane phospholipids. PLSCR1 is a component of membrane lipid rafts and has been shown to both physically and functionally interact with activated epidermal growth factor (EGF) receptors and other raft-associated cell surface receptors. Cell stimulation by EGF results in Tyr phosphorylation of PLSCR1, its association with both Shc and EGF receptors, and rapid cycling of PLSCR1 between plasma membrane and endosomal compartments. We now report evidence that upon EGF stimulation, PLSCR1 is phosphorylated by c-Src, within the tandem repeat sequence 68VYNQPVYNQP77. The in vivo interaction between PLSCR1 and Shc requires the Src-mediated phosphorylation on tyrosines 69 and 74. In in vitro pull down studies, phosphorylated PLSCR1 was found to bind directly to Shc through the phosphotyrosine binding domain. Consistent with the potential role of PLSCR1 in growth factor signaling pathways, granulocyte precursors derived from mice deficient in PLSCR1 show impaired proliferation and maturation under cytokine stimulation. Using PLSCR1-/- embryonic fibroblasts and kidney epithelial cells, we now demonstrate that deletion of PLSCR1 from the plasma membrane reduces the activation of c-Src by EGF, implying that PLSCR1 normally facilitates receptor-dependent activation of this kinase. We propose that PLSCR1, through its interaction with Shc, promotes Src kinase activation through the EGF receptor.  相似文献   

8.
We have previously reported (Samelson, L.E., Patel, M.D., Weissman, A.M., Harford, J.B., and Klausner, R.D. (1986) Cell 46, 1083-1090) that T cell activation by antigen is associated with activation of two biochemical pathways. In this scheme two protein kinases are activated by stimulation of the T cell antigen receptor (TCR). These kinases phosphorylate two different chains of the TCR complex. Protein kinase C is responsible for the phosphorylation of the gamma, and, to a lesser extent, the epsilon chains of the receptor on serine residues while the activation of an unidentified tyrosine kinase leads to phosphorylation of the p21 subunit of the receptor on tyrosine residues. In addition to activation by specific antigens, T cells can be functionally activated in vitro by the addition of antibodies that bind either the antigen receptor or the Thy-1 molecule, an entity independent of the receptor. We have used antibodies directed against these molecules and show that they result in the same dual kinase activation observed with antigen stimulation. In addition we have compared the three ligands, antigen, and antibodies directed against the epsilon chain of the TCR or against Thy-1, in terms of how they couple to the two kinase pathways. Activation of phosphatidylinositol breakdown and TCR phosphorylation on serine by all three stimuli are sensitive to cAMP inhibition. In contrast, only antigen-stimulated tyrosine kinase activation is sensitive to cAMP while the two antibody reagents activate the tyrosine kinase in a manner that is entirely insensitive to cAMP inhibition.  相似文献   

9.
Activation of both T and B lymphocytes through their membrane receptors for antigen is known to induce breakdown of inositol phospholipids. In addition, T cell activation by antigen is accompanied by increased protein tyrosine phosphorylation of components of the T cell antigen receptor. We now provide evidence that B cell activation through membrane immunoglobulin is also coupled to stimulation of protein tyrosine kinase activity. One potential candidate for a B lymphocyte protein tyrosine kinase is an 80 kd molecule that is itself phosphorylated at tyrosine residues in response to stimulation with anti-immunoglobulin antibodies.  相似文献   

10.
The interaction of the CC-chemokine RANTES with its cell surface receptors transduces multiple intracellular signals: low concentrations of RANTES (1 to 10 nM) stimulate G-protein-coupled receptor (GPCR) activity, and higher concentrations (1 microM) activate a phosphotyrosine kinase (PTK)-dependent pathway. Here, we show that the higher RANTES concentrations induce rapid tyrosine phosphorylation of multiple proteins. Several src-family kinases (Fyn, Hck, Src) are activated, as is the focal adhesion kinase p125 FAK and, eventually, members of the p44/p42 mitogen-activated protein kinase (MAPK) family. This PTK signaling pathway can be activated independently of known seven-transmembrane GPCRs for RANTES because it occurs in cells that lack any such RANTES receptors. Instead, activation of the PTK signaling pathway is dependent on the expression of glycosaminoglycans (GAGs) on the cell surface, in that it could not be activated by RANTES in GAG-deficient cells. We have previously demonstrated that RANTES can both enhance and inhibit infection of cells with human immunodeficiency virus type 1 (HIV-1). Here we show that activation of both PTK and MAPK is involved in the enhancement of HIV-1 infectivity caused by RANTES in cells that lack GPCRs for RANTES but which express GAGs.  相似文献   

11.
We have studied how insulin-mediated internalization of insulin receptors and insulin activation of the insulin receptor kinase might be inter-related. Isolated rat adipocytes were exposed to 0, 6, or 500 ng/ml insulin for 40 min at 37 degrees C. Subsequently, plasma membrane, low-density microsomal membrane and high-density microsomal membrane subcellular fractions were prepared. Measurement of insulin binding to insulin receptors isolated from the membrane fractions revealed that exposure of cells to insulin resulted in a loss of binding activity (13% at 6 ng/ml, 27% at 500 ng/ml insulin) from the plasma membranes which was completely accounted for by the appearance of receptors in the low-density and high-density microsomal membrane fractions, indicating that insulin had induced translocation of insulin receptors from the surface to the cell interior. Measurement of kinase activity of the isolated receptors revealed that exposure of intact cells to 500 ng/ml insulin resulted in as much as a 35-fold increase in the intrinsic kinase activity of receptors from subcellular fractions. The kinase activity per receptor was equal in all fractions at 3-4 min but by 20 min the activity of the internalized receptors fell approximately 40% to a steady state; plasma membrane receptors, on the other hand, remained fully active over time. This indicates that newly internalized receptors retain their kinase activity but undergo subsequent deactivation. Following exposure of cells to 6 ng/ml insulin, the degree of activation of the insulin receptor kinase was lower in the plasma membrane fraction (24% of the insulin effect at 500 ng/ml) than in the low-density and high-density microsomal membrane fractions (54 and 77%, respectively, of the insulin effect at 500 ng/ml). These results suggest that receptors with an activated kinase are preferentially internalized. We conclude that exposure of adipocytes to insulin causes endocytosis of insulin receptors and activation of insulin receptor kinase, newly internalized receptors are fully active tyrosine kinases but are deactivated as they traverse the intracellular organelles represented by low-density and high-density microsomal membranes, and insulin receptor occupancy, possibly by stimulating phosphorylation and activating the insulin receptor kinase, is important for targeting insulin receptors for internalization.  相似文献   

12.
Membrane depolarization is one of the earliest events in activation of cells by ligand receptor interaction. It is known that crosslinking of antigen-specific Ig receptors on B cells by antigen can induce membrane depolarization and subsequent Ia antigen expression on the cell surface. To determine whether a tolerance-inducing form of the antigen can also induce membrane depolarization after Ig receptor binding we used splenic B cells enriched for dinitrophenyl (DNP)-specific cells and determined relative membrane potential in these cells after binding of DNP-murine IgG2a (MGG) (tolerogen) or antigens (DNP-keyhole limpet hemocyanin (KLH) and DNP-Ficoll). Relative membrane potential was determined by loading the cells with the dye, 3.3-dipentyloxacarboxyanine (DiOC5(3)) after 2 hr incubation with ligand and determining relative fluorescence intensity on the fluorescence-activated cell sorter (FACS). Carriers alone did not depolarize these normal cell populations, but 100% of DNP-specific cells were depolarized by DNP-KLH and DNP-MGG while 85% were depolarized by DNP-Ficoll. To determine if tolerant B cells could be depolarized by antigen we induced tolerance in vitro or in vivo with DNP-MGG and measured the depolarization of DNP-specific B cells in response to antigens and tolerogen. DNP-specific B cells made tolerant by DNP-MGG underwent membrane depolarization when incubated with either DNP-KLH, DNP-MGG, or DNP-Ficoll but not with carriers alone. These data suggest that tolerogen induces membrane depolarization equally as well as antigen in normal cells. In addition, tolerant cells can be depolarized by Ig receptor crosslinking with either antigen or tolerogen. Thus, tolerance does not block the early membrane events induced by antigen in B cells.  相似文献   

13.
G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors (GPCRs) to initiate receptor desensitization. In addition to the canonical phosphoacceptor site of the kinase domain, activated receptors bind to a distinct docking site that confers higher affinity and activates GRKs allosterically. Recent mutagenesis and structural studies support a model in which receptor docking activates a GRK by stabilizing the interaction of its ~20-amino acid N-terminal region with the kinase domain. This interaction in turn stabilizes a closed, more active conformation of the enzyme. To investigate the importance of this interaction for the process of GRK activation, we first validated the functionality of the N-terminal region in rhodopsin kinase (GRK1) by site-directed mutagenesis and then introduced a disulfide bond to cross-link the N-terminal region of GRK1 with its specific binding site on the kinase domain. Characterization of the kinetic and biophysical properties of the cross-linked protein showed that disulfide bond formation greatly enhances the catalytic efficiency of the peptide phosphorylation, but receptor-dependent phosphorylation, Meta II stabilization, and inhibition of transducin activation were unaffected. These data indicate that the interaction of the N-terminal region with the kinase domain is important for GRK activation but does not dictate the affinity of GRKs for activated receptors.  相似文献   

14.
Lymphocyte activation, whether specific or nonspecific, is generally conceptualized as initiated by the binding of an activating ligand to a surface membrane receptor, followed by transduction of the signal across the cell membrane. In many situations several qualitatively distinct signals are required. We have recently described a new class of lymphocyte activator, the C8 bromine substituted guanine ribonucleosides, that traverse the cell membrane, bypassing classical triggering mechanism(s), apparently activating the lymphocyte at an intracellular site. However, the identity of the lymphocyte population(s) activated, as well as the nature of any cellular interactions involved in activation, has not been studied heretofore. The present experiments describe the cellular parameters of lymphocyte activation by a thiol substituted member of this class of activators, 8-mercaptoguanosine (8MGuo). Upon addition of this nucleoside derivative to cultures of murine spleen cells, a marked increase in [3H]TdR uptake and blast transformation ensues. Normal splenic B cells and spleen cells from congenitally athymic (nu/nu) mice are responsive to 8MGuo, whereas thymocytes and splenic T cells are not. Two subpopulations of B cells appear to be involved in the response to this nucleoside. The predominant one is a mature population that bears surface delta-chains, la antigens, C receptors, and (by indirect evidence) the Lyb3, 5, and 7 antigens. These cells also bear mu-chain and Fc receptors. In addition, a second, minor subpopulation of less mature cells that bear only mu-chain and Fc receptors also appears to be reactive to 8MGuo. The existence of this immature, reactive B cell subset was confirmed by observation of 8MGuo responsiveness in lymphocytes from 4-day-old mice whose cells do not yet exhibit these later-appearing markers. Accessory cells appear to play a minimal, if any, role in the 8MGuo response. These results establish two distinct B cell subpopulations as the major and minor cellular targets of C8-derivatized nucleosides, and suggest that the activation process results from a direct interaction between the nucleoside and target cell.  相似文献   

15.
16.
We have recently reported that activation of protein kinase C (PKC) plays a negative role in CD95-mediated apoptosis in human T cell lines. Here we present data indicating that although the PKC-induced mitogen-activated protein kinase pathway could be partially implicated in the abrogation of CD95-mediated apoptosis by phorbol esters in Jurkat T cells, the major inhibitory effect is exerted through a PKC-dependent, mitogen-activated protein kinase-independent signaling pathway. Furthermore, we demonstrate that activation of PKC diminishes CD95 receptor aggregation elicited by agonistic CD95 Abs. On the other hand, it has been reported that UV radiation-induced apoptosis is mediated at least in part by the induction of CD95 oligomerization at the cell surface. Here we show that activation of PKC also inhibits UVB light-induced CD95 aggregation and apoptosis in Jurkat T cells. These results reveal a novel mechanism by which T cells may restrain their sensitivity to CD95-induced cell death through PKC-mediated regulation of CD95 receptor oligomerization at the cell membrane.  相似文献   

17.
Zhang X  Gureasko J  Shen K  Cole PA  Kuriyan J 《Cell》2006,125(6):1137-1149
The mechanism by which the epidermal growth factor receptor (EGFR) is activated upon dimerization has eluded definition. We find that the EGFR kinase domain can be activated by increasing its local concentration or by mutating a leucine (L834R) in the activation loop, the phosphorylation of which is not required for activation. This suggests that the kinase domain is intrinsically autoinhibited, and an intermolecular interaction promotes its activation. Using further mutational analysis and crystallography we demonstrate that the autoinhibited conformation of the EGFR kinase domain resembles that of Src and cyclin-dependent kinases (CDKs). EGFR activation results from the formation of an asymmetric dimer in which the C-terminal lobe of one kinase domain plays a role analogous to that of cyclin in activated CDK/cyclin complexes. The CDK/cyclin-like complex formed by two kinase domains thus explains the activation of EGFR-family receptors by homo- or heterodimerization.  相似文献   

18.
B cell linker protein (BLNK) is a SLP-76-related adaptor protein essential for signal transduction from the BCR. To identify components of BLNK-associated signaling pathways, we performed a phosphorylation-dependent yeast two-hybrid analysis using BLNK probes. Here we report that the serine/threonine kinase hematopoietic progenitor kinase 1 (HPK1), which is activated upon antigen-receptor stimulation and which has been implicated in the regulation of MAP kinase pathways, interacts physically and functionally with BLNK in B cells and with SLP-76 in T cells. This interaction requires Tyr(379) of HPK1 and the Src homology 2 (SH2) domain of BLNK/SLP-76. Via homology modeling, we defined a consensus binding site within ligands for SLP family SH2 domains. We further demonstrate that the SH2 domain of SLP-76 participates in the regulation of AP-1 and NFAT activation in response to T cell receptor (TCR) stimulation and that HPK1 inhibits AP-1 activation in a manner partially dependent on its interaction with SLP-76. Our data are consistent with a model in which full activation of HPK1 requires its own phosphorylation on tyrosine and subsequent interaction with adaptors of the SLP family, providing a mechanistic basis for the integration of this kinase into antigen receptor signaling cascades.  相似文献   

19.
Thrombin stimulation of human platelets is associated with turnover of inositol phospholipids, mobilization of intracellular Ca2+ stores, and activation of protein kinase C. However, within 5 minutes, the thrombin receptor desensitizes, but can be re-coupled to its effectors by stimulation of alpha 2-adrenergic receptors (Crouch and Lapetina, J. Biol. Chem. 263, 3363-3371, 1988). This effect of epinephrine was found to be inhibited by preincubation of platelets with phorbol ester, suggesting that protein kinase C was inhibitory. However, since thrombin also activated protein kinase C and epinephrine was active following thrombin stimulation of platelets, this implied that thrombin activation of protein kinase C may have been spacially isolated near the thrombin receptor and could not inactivate alpha 2-receptor activity. In the present paper, we have tested this possibility, and we present evidence which strongly favours the possibility that protein kinase C activation by receptors induces its local translocation to the cell membrane.  相似文献   

20.
In living cells proteins motilities regulate the spatiotemporal dynamics of molecular pathways. We consider here a reaction-diffusion model of mutual kinase-receptor activation showing that the strength of positive feedback is controlled by the kinase diffusion coefficient. For high diffusion, the activated kinase molecules quickly leave the vicinity of the cell membrane and cannot efficiently activate the receptors. As a result, in a broad range of parameters, the cell can be activated only if the kinase diffusion coefficient is sufficiently small. Our simple model shows that change in the motility of substrates may dramatically influence the cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号