首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular dynamics simulations have been used to characterize the effects of transfer from aqueous solution to a vacuum to inform our understanding of mass spectrometry of membrane-protein-detergent complexes. We compared two membrane protein architectures (an α-helical bundle versus a β-barrel) and two different detergent types (phosphocholines versus an alkyl sugar) with respect to protein stability and detergent packing. The β-barrel membrane protein remained stable as a protein-detergent complex in vacuum. Zwitterionic detergents formed conformationally destabilizing interactions with an α-helical membrane protein after detergent micelle inversion driven by dehydration in vacuum. In contrast, a nonionic alkyl sugar detergent resisted micelle inversion, maintaining the solution-phase conformation of the protein. This helps to explain the relative stability of membrane proteins in the presence of alkyl sugar detergents such as dodecyl maltoside.  相似文献   

2.
Molecular dynamics simulations have been used to characterize the effects of transfer from aqueous solution to a vacuum to inform our understanding of mass spectrometry of membrane-protein-detergent complexes. We compared two membrane protein architectures (an α-helical bundle versus a β-barrel) and two different detergent types (phosphocholines versus an alkyl sugar) with respect to protein stability and detergent packing. The β-barrel membrane protein remained stable as a protein-detergent complex in vacuum. Zwitterionic detergents formed conformationally destabilizing interactions with an α-helical membrane protein after detergent micelle inversion driven by dehydration in vacuum. In contrast, a nonionic alkyl sugar detergent resisted micelle inversion, maintaining the solution-phase conformation of the protein. This helps to explain the relative stability of membrane proteins in the presence of alkyl sugar detergents such as dodecyl maltoside.  相似文献   

3.
The solubilization and delipidation of sarcoplasmic reticulum Ca2+-ATPase by different nonionic detergents were measured from changes in turbidity and recovery of intrinsic fluorescence of reconstituted ATPase in which tryptophan residues had been quenched by replacement of endogenous phospholipids with brominated phospholipids. It was found that incorporation of C12E8 or dodecyl maltoside (DM) at low concentrations in the membrane, resulting in membrane "perturbation" without solubilization, displaced a few of the phospholipids in contact with the protein; perturbation was evidenced by a parallel drop in ATPase activity. As a result of further detergent addition leading to solubilization, the tendency toward delipidation of the immediate environment of the protein was stopped, and recovery of enzyme activity was observed, suggesting reorganization of phospholipid and detergent molecules in the solubilized ternary complex, as compared to the perturbed membrane. After further additions of C12E8 or DM to the already solubilized membrane, the protein again experienced progressive delipidation which was only completed at a detergent concentration about 100-fold higher than that necessary for solubilization. Delipidation was correlated with a decrease in enzyme activity toward a level similar to that observed during perturbation. On the other hand, Tween 80, Tween 20, and Lubrol WX failed to solubilize SR membranes and to induce further ATPase delipidation when added after preliminary SR solubilization by C12E8 or dodecyl maltoside. For Tween 80, this can be related to an inability to solubilize pure lipid membrane; in contrast, Tween 20 and Lubrol WX were able to solubilize liposomes but not efficiently to solubilize SR membranes. In all three cases, insertion of the detergent in SR membranes is, however, demonstrated by perturbation of enzyme activity. Correlation between detergent structure and ability to solubilize and delipidate the ATPase suggests that one parameter impeding ATPase solubilization might be the presence of a bulky detergent polar headgroup, which could not fit close to the protein surface. We also conclude that in the active protein/detergent/lipid ternary complexes, solubilized by C12E8 or dodecyl maltoside, most phospholipids remain closely associated with the ATPase hydrophobic surface as in the membranous form. Binding of only a few detergent molecules on this hydrophobic surface may be sufficient for inhibition of ATPase activity observed at high ATP concentration, both during perturbation and in the completely delipidated, solubilized protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
A discontinuous gradient polyacrylamide gel electrophoresis under nondenaturing conditions has been used to demonstrate monodispersity of procaryotic and eucaryotic cytochrome c oxidase preparations. Alkaline treated bovine enzyme which contains nine subunits as analysed by subsequent discontinuous SDS-polyacrylamide gel electrophoresis is a monodisperse dimer in 0.1% Triton X-100 and a monomer in 0.1% dodecyl maltoside. The Mr-values corrected for bound detergent are 286,000 in Triton X-100 and 152,000 in dodecyl maltoside respectively. The two-subunit bacterial cytochrome c oxidase of Paracoccus denitrificans is proved to be a monomer with a corrected Mr of 76,000 in both nonionic detergents Triton X-100 and dodecyl maltoside.  相似文献   

5.
A novel and reliable gas chromatography-flame ionization detection (GC-FID) method that can separate and quantify detergents frequently used in membrane protein structural studies has been developed. Different detergents were identified through FID peaks with different retention times. A quadratic regression curve was found to fit the integrated FID peak area against different detergent concentrations. Detergents can be quantified as low as the nanogram level: lauryl-dimethylamine-N-oxide (LDAO), 5 ng; dodecyl maltoside (DDM), 10 ng; and dodecyl phosphocholine (DPC), 50 ng. This method can be applied directly to measure detergent concentration and molar ratio of membrane protein to detergents during membrane protein extraction, purification, concentration, and crystallization.  相似文献   

6.
For the first time, the enzyme rhodanese (thiosulfate:cyanide sulfurtransferase; EC 2.8.1.1) has been renatured from 6 M guanidinium chloride (GdmCl) by direct dilution of the denaturant at relatively high protein concentrations. This has been made possible by using the nonionic detergent dodecyl-beta-D-maltoside (lauryl maltoside). Lauryl maltoside concentration dependence of the renaturation and reactivation time courses were studied using 50 micrograms/ml rhodanese. There was no renaturation at lauryl maltoside (less than 0.1 mg/ml), and the renaturability increased, apparently cooperatively, up to 5 mg/ml detergent. This may reflect weak binding of lauryl maltoside to intermediate rhodanese conformers. The renaturability began to decrease above 5 mg/ml lauryl maltoside and was significantly reduced at 20 mg/ml. Individual progress curves of product formation, for rhodanese diluted into lauryl maltoside 90 min before assay, showed induction phases as long as 7 min before an apparently linear steady state. The induction phase increased with lauryl maltoside concentration and could even be observed in native controls above 1 mg/ml detergent. These results are consistent with suggestions that refolding of GdmCl-denatured rhodanese involves an intermediate with exposed hydrophobic surfaces that can partition into active and inactive species. Further, lauryl maltoside can stabilize those surfaces and prevent aggregation and other hydrophobic interaction-dependent events that reduce the yield of active protein. The rhodanese-lauryl maltoside complex could also form with native enzyme, thus explaining the induction phase with this species. Finally, it is suggested that renaturation of many proteins might be assisted by lauryl maltoside or other "nondenaturing" detergents.  相似文献   

7.
A rapid and simple purification of milligram amounts of 2,3-oxidosqualene cyclase, an integral membrane enzyme that catalyzes the cyclization of squalene epoxide to lanosterol, is reported. Several nonionic detergents (Triton X-100, Tween 80, Emulphogene, and lauryl maltoside) were evaluated for solubilization of oxidosqualene cyclase from rat liver microsomes. At a detergent concentration of 5 mg/ml, lauryl maltoside was approximately 10 times more effective than Emulphogene in the solubilization of oxidosqualene cyclase; Triton X-100 and Tween 80 were less effective than Emulphogene as judged by the relative specific activities of the solubilized enzyme. Treatment of microsomes with lauryl maltoside resulted in a selective solubilization of the cyclase with concomitant activation of the enzyme. The solubilized enzyme was purified to homogeneity by fast protein liquid chromatography. The purified enzyme consists of a single subunit that has an apparent molecular weight of 65,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme obeys saturation kinetics and the apparent Km of (2,3)-oxidosqualene is 15 microM; the apparent kcat/Km is 200 M-1.min-1. An improved assay of the enzyme that utilizes high performance liquid chromatography methods is also described.  相似文献   

8.
The reconstitution of Na+/K+-ATPase from outer medulla of rabbit kidney into large unilamellar liposomes was achieved through detergent removal by dialysis of mixed micellar solutions of synthetic dioleoyl phosphatidylcholine/octyl glucoside and Na+/K+-ATPase/decyl maltoside or decenyl maltoside. Tight, transport-active liposomes were formed when the lipid and the enzyme were solubilized separately in the nonionic detergents and mixed immediately before starting the dialysis. The two maltoside detergents with different structures of the hydrophobic part of the molecule proved to be well suited for the solubilization of Na+/K+-ATPase with high retention of enzyme activity; the inactivation of enzyme being evidently slower with the unsaturated decenyl maltoside. The diameters of the proteoliposomes, 110 and 170 nm, respectively, were also dependent on the structure of the maltoside detergent, the saturated decyl maltoside producing the bigger liposomes. After freeze-fracture, both preparations exhibited intramembranous particles as structural indicators of successful reconstitution. The electrogenic activity of the reconstituted enzyme was determined by fluorescence measurements with Oxonol VI and by tracer-flux measurements with 22Na+.  相似文献   

9.
Quantitative studies of membrane protein folding and unfolding can be difficult because of difficulties with efficient refolding as well as a pronounced propensity to aggregate. However, mixed micelles, consisting of the anionic detergent sodium dodecyl sulfate and the nonionic detergent dodecyl maltoside facilitate reversible and quantitative unfolding and refolding. The 4-transmembrane helix protein DsbB from the inner membrane of Escherichia coli unfolds in mixed micelles according to a three-state mechanism involving an unfolding intermediate I. The temperature dependence of the kinetics of this reaction between 15 degrees and 45 degrees C supports that unfolding from I to the denatured state D is accompanied by a significant decrease in heat capacity. For water-soluble proteins, the heat capacity increases upon unfolding, and this is generally interpreted as the increased binding of water to the protein as it unfolds, exposing more surface area. The decrease in DsbB's heat capacity upon unfolding is confirmed by independent thermal scans. The decrease in heat capacity is not an artifact of the use of mixed micelles, since the water soluble protein S6 shows conventional heat-capacity changes in detergent. We speculate that it reflects the binding of SDS to parts of DsbB that are solvent-exposed in the native DM-bound state. This implies that the periplasmic loops of DsbB are relatively unstructured. This anomalous thermodynamic behavior has not been observed for beta-barrel membrane proteins, probably because they do not bind SDS so extensively. Thus the thermodynamic behavior of membrane proteins appears to be intimately connected to their detergent-binding properties.  相似文献   

10.
We have used the nonionic detergent octyl-β-d-glucopyranoside in combination with sodium dodecyl sulfate to isolate two novel Photosystem I (PSI) complexes from spinach (Spinacea oleracea L.) thylakoid membranes. These complexes have been characterized as to their spectral properties, content of PSI reaction center chlorophyll P700, and protein composition. PSI-B, purified from solubilized membranes by sucrose density gradient centrifugation, is a putative native PSI complex. PSI-B contains four polypeptides between 21 and 25 kilodaltons in addition to the components of the PSI antenna complex (LHCI); three of these polypeptides have not previously been associated with PSI. A second complex, CPI*, is purified from octyl glucoside/sodium dodecyl sulfate solubilized thylakoids by two cycles of preparative gel electrophoresis under mildly denaturing conditions. Electrophoresis under these conditions releases a discrete set of polypeptides from PSI producing a complex composed only of the PSI reaction center and the LHCI antenna.  相似文献   

11.
The solubilizing power of various nonionic and zwitterionic detergents as membrane protein solubilizers for two-dimensional electrophoresis was investigated. Human red blood cell ghosts and Arabidopsis thaliana leaf membrane proteins were used as model systems. Efficient detergents could be found in each class, i.e. with oligooxyethylene, sugar or sulfobetaine polar heads. Among the commercially available nonionic detergents, dodecyl maltoside and decaethylene glycol mono hexadecyl ether proved most efficient. They complement the more classical sulfobetaine detergents to widen the scope of useful detergents for the solubilization of membrane proteins in proteomics.  相似文献   

12.
The effect of cationic, anionic and nonionic detergents on the EPR spectrum of spin-labeled somatostatin has been studied. At detergent concentrations well above the critical micelle concentration, nonionic detergents do not alter the EPR spectrum. Sodium dodecyl sulfate markedly alters both the line height ratio and the hyperfine splitting constant, whilst dodecyltrimethylammonium bromide alters only slightly the hyperfine splitting constant and line height ratio. The somatostatin-sodium dodecyl sulfate complex appeared monodisperse by sedimentation equilibrium with about 17 g bound detergent per g peptide. Circular dichroic and difference spectra of the dodecyl sulfate-somatostatin complex show that the tryptophanyl residue is buried in a nonpolar environment and that the secondary and tertiary structure of the peptide is markedly altered. Sedimentation equilibrium studies suggest that two types of dodecyltrimethylammonium-somatostatin complex exist. One type resembles the dodecyl sulfate-peptide complex, whilst the other appears to include several peptide units with only about one gram bound detergent per gram peptide.  相似文献   

13.
Methylation of aquaporins in plant plasma membrane   总被引:2,自引:0,他引:2  
A thorough analysis, using MS, of aquaporins expressed in plant root PM (plasma membrane) was performed, with the objective of revealing novel post-translational regulations. Here we show that the N-terminal tail of PIP (PM intrinsic protein) aquaporins can exhibit multiple modifications and is differentially processed between members of the PIP1 and PIP2 subclasses. Thus the initiating methionine was acetylated or cleaved in native PIP1 and PIP2 isoforms respectively. In addition, several residues were detected to be methylated in PIP2 aquaporins. Lys3 and Glu6 of PIP2;1, one of the most abundant aquaporins in the PM, occurred as di- and mono-methylated residues respectively. Ectopic expression in Arabidopsis suspension cells of PIP2;1, either wild-type or with altered methylation sites, revealed an interplay between methylation at the two sites. Measurements of water transport in PM vesicles purified from these cells suggested that PIP2;1 methylation does not interfere with the aquaporin intrinsic water permeability. In conclusion, the present study identifies methylation as a novel post-translational modification of aquaporins, and even plant membrane proteins, and may represent a critical advance towards the identification of new regulatory mechanisms of membrane transport.  相似文献   

14.
Chen M  Quinnell RG  Larkum AW 《FEBS letters》2002,514(2-3):149-152
The major light-harvesting protein complex containing chlorophyll (Chl) d was isolated from Acaryochloris marina thylakoid membranes. Isolation was achieved by detergent solubilisation followed by separation on 6-40% sucrose gradients using ultracentrifugation. The best Chl d yield (70%) used 0.3% dodecyl maltoside, 0.15% octyl glucoside, 0.05% zwittergent 3-14 with the detergent:total Chl d ratio around 10:1 (w/w). Characterisation of the light-harvesting pigment protein complex (lhc) involved non-denaturing electrophoresis, SDS-PAGE, absorbance and fluorescence spectroscopy. The main polypeptide in the lhc was shown to be ca. 34 kDa and to contain Chl d and Chl a, indicating that the Acaryochloris lhc is similar to that of prochlorophytes. The Chl a level varied with the culture conditions, which is consistent with previous findings.  相似文献   

15.
Na,K-ATPase from the rectal glands of the spiny dogfish (Squalus acanthias) has been purified by concanavalin A—Sepharose affinity chromatography after solubilization in the nonionic detergent octaethyleneglycoldodecylmonoether. The method is rapid and yields enzyme at high protein concentrations, and the enzyme is fully active. The enzyme particles behave as a homogeneous population of particles, each containing protein, lipid, and detergent. The size of the particle is identical to what has been measured previously, giving a protein molecular weight of 270,000 with 50 mol of lipid bound.  相似文献   

16.
Unfolding of beta-sheet proteins in SDS   总被引:1,自引:0,他引:1       下载免费PDF全文
Beta-sheet proteins are particularly resistant to denaturation by sodium dodecyl sulfate (SDS). Here we compare unfolding of two beta-sandwich proteins TNfn3 and TII27 in SDS. The two proteins show different surface electrostatic potential. Correspondingly, TII27 unfolds below the critical micelle concentration via the formation of hemimicelles on the protein surface, whereas TNfn3 only unfolds around the critical micelle concentration. Isothermal titration calorimetry confirms that unfolding of TII27 sets in at lower SDS concentrations, although the total number of bound SDS molecules is similar at the end of unfolding. In mixed micelles with the nonionic detergent dodecyl maltoside, where the concentration of monomeric SDS is insignificant, the behavior of the two proteins converges. TII27 unfolds more slowly than TNfn3 in SDS and follows a two-mode behavior. Additionally TNfn3 shows inhibition of SDS unfolding at intermediate SDS concentrations. Mutagenic analysis suggests that the overall unfolding mechanism is similar to that observed in denaturant for both proteins. Our data confirm the kinetic robustness of beta-sheet proteins toward SDS. We suggest this is related to the inability of SDS to induce significant amounts of alpha-helix structure in these proteins as part of the denaturation process, forcing the protein to denature by global rather than local unfolding.  相似文献   

17.
Monodisperse solutions of bovine rhodopsin monomers, devoid of lipid, associated with a linear polyoxyethylene alcohol detergent have been prepared. The composition and homogeneity of these complexes have been determined by hydrodynamic characterisation. Each rhodopsin molecule is associated with about 110 monomers of the detergent. These rhodopsin-detergent complexes have been studied by small-angle neutron scattering. Partial or total deuteration of the detergent, as well as variation of the 2H2O/H2O ratio in the solvent, were used to eliminate the detergent—solvent contrast at various protein—solvent contrasts. The size and shape of the detergent micelle and of the rhodopsin-detergent complexes were shown to be independent of solvent or detergent deuteration. Mixture of selectively deuterated detergent molecules allowed us to obtain an homogeneous scattering density for the detergent part of the micelles and therefore to eliminate totally its contribution to the scattering when it is contrast matched. Neutron scattering from rhodopsin alone was then measured even in highly deuterated solvents, with low incoherent background, as for a water-soluble protein. Supplementary neutron scattering measurements on rhodopsin-dodecyl dimethylamine oxide micelles confirmed essentially the results reported by Yeager (1975). Analysis of the neutron scattering data indicates that most of the hydrophobic residues of rhodopsin form a compact region which has zero hydration, this probably being the part which is embedded in the disc membrane, and that the unhydrated rhodopsin molecule is asymmetrically arranged with respect to the membrane. Comparison with the results of a small-angle X-ray scattering study (Sardet et al., 1976) implies that the peripheral regions on both sides of the membrane are highly hydrated. Several schematic models are discussed.  相似文献   

18.
Dodecyl sulfate complexes of two soluble proteins, serum albumin and fumarase, have been “renatured” with large excesses of the nonionic detergent Triton X-100. The resulting complexes, essentially free of dodecyl sulfate, differ in their sedimentation properties relative to the native protein and in their interaction with Triton X-100. Albumin molecules refold to a form binding only very small amounts of Triton and have a sedimentation coefficient similar to that of the non-denatured protein. On the other hand, refolded fumarase molecules have a lower sedimentation coefficient than that of the native enzyme and bind up to 1.06 mg of Triton/mg protein. It is postulated that the fumarase molecule has been turned “inside-out” by the dodecyl sulfate/Triton treatment, and the implications of such large conformational changes for protein transport across membranes are discussed.  相似文献   

19.
This study describes the interaction between sodium dodecyl sulfate (SDS) and membrane proteins reconstituted into large unilamellar lipid vesicles and detergent micelles studied by circular dichroism (CD) and polarity sensitive probe labeling. Specifically, we carried out a comparative study of two aquaporins with high structural homology SoPIP2;1 and AqpZ using identical reconstitution conditions. Our CD results indicate that SDS, when added to membrane-reconstituted aquaporins in concentrations below the SDS critical micelle concentration (CMC, ~8mM), causes helical rearrangements of both aquaporins. However, we do not find compelling evidence for unfolding. In contrast when SDS is added to detergent stabilized aquaporins, SoPIP2;1 partly unfolds, while AqpZ secondary structure is unaffected. Using a fluorescent polarity sensitive probe (Badan) we show that SDS action on membrane reconstituted SoPIP2;1 as well as AqpZ is associated with initial increased hydrophobic interactions in protein transmembrane (TM) spanning regions up to a concentration of 0.1× CMC. At higher SDS concentrations TM hydrophobic interactions, as reported by Badan, decrease and reach a plateau from SDS CMC up to 12.5× CMC. Combined, our results show that SDS does not unfold neither SoPIP2;1 nor AqpZ during transition from a membrane reconstituted form to a detergent stabilized state albeit the native folds are changed.  相似文献   

20.
The molecular weight of proteins in protein-detergent complexes can be determined from ultracentrifugation experiments if the amount of bound detergent is known. A new sensitive method to measure the binding of the nonionic detergent Triton X-100 to proteins has been developed. For the membrane proteins studied, less than 50 μg of protein was required to achieve an accuracy of 10% in the determination of the detergent-protein weight ratio.The proteins were equilibrated with the detergent by electrophoresis into polyacrylamide gels containing radioactively labelled Triton X-100. The gels were then sliced and the amount of bound detergent calculated from the increase in radioactivity in the slices containing the protein zone. The amounts of protein were determined by amino acid analysis of identical protein zones cut from gels running parallel .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号