首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of animals with their food can yield insights into habitat characteristics, such as perceived predation risk and relative quality. We deployed experimental foraging patches in wetlands used by migrating dabbling ducks Anas spp. in the central Illinois River Valley to estimate variation in seed removal and giving‐up density (GUD; i.e. density of food remaining in patches following abandonment) with respect to seed density, seed size, seed depth in the substrate, substrate firmness, perceived predation risk, and an energetic profitability threshold (i.e. critical food density). Seed depth and the density of naturally‐occurring seeds outside of experimental plots affected seed removal and GUD in experimental patches more than perceived predation risk, seed density, seed size or substrate firmness. The greatest seed removal and lowest GUDs in experimental patches occurred when food resources in alternative foraging locations outside of plots (i.e. opportunity costs) appeared to be near or below a critical food density (i.e. 119–181 kg ha–1). Giving‐up densities varied substantially from a critical food density across a range of food densities in alternative foraging locations suggesting that fixed GUDs should not be used as surrogates for critical food densities in energetic carrying capacity models. Foraging and resting rates in and near experimental foraging patches did not reflect patterns of seed removal and were poor predictors of GUD and foraging habitat quality. Our results demonstrated the usefulness of GUDs as indicators of habitat quality for subsurface, benthic foragers relative to other available foraging patches and suggested that food may be limited for dabbling ducks during spring migration in some years in the midwestern USA.  相似文献   

2.
The influence of temporal and spatial heterogeneity in seed availability on the foraging behaviour of the harvester ant Messor arenarius was studied in an arid shrubland in the Negev Desert, Israel. The study investigated the implications of behavioural responses to heterogeneity in seed availability for the seed predation process and the potential for feedback effects on vegetation. Vegetation and seed rain were monitored across two landscape patch types (shrub patches and inter-shrub patches) in 1997. Shrub patches were shown to have higher plant and seed-rain density than inter-shrub patches. Patch use and seed selection by M. arenarius foragers were monitored through the spring, summer and autumn of 1997. After a pulse of seed production in the spring, the ants exhibited very narrow diet breadth, specialising on a single annual grass species, Stipa capensis. At this time, ants were foraging and collecting seeds mainly from inter-shrub patches. In the summer, diet breadth broadened and use of shrub patches increased, although the rate of seed collection per unit area was approximately equal in the two patch types. The increase in the use of shrub patches was due to colony-level selection of foraging areas with relatively high shrub cover and an increase in the use of shrub patches by individual foragers. In the autumn, a pulse of seed production by the shrub species Atractylis serratuloides and Noaea mucronata led to a reduction in diet breadth as foragers specialised on these species. During this period, foragers exhibited a large increase in the proportion of time spent in shrub patches and in the proportion of food items collected from shrub patches. The seasonal patterns in foraging behaviour showed linked changes in seed selection and patch use resulting in important differences in the seed predation process between the two landscape patch types. For much of the study period, there was higher seed predation pressure on the inter-shrub patches, which were of relatively low productivity compared with the shrub patches. This suggests that the seed predation process may help maintain the spatial heterogeneity in the density of ephemeral plants in the landscape.  相似文献   

3.
《Ostrich》2013,84(1):101-104
The foraging efficiencies of four sympatric southern African seed-eating birds, namely Bronze Mannikin Spermestes cucullatus, Cape Sparrow Passer melanurus, Southern Red Bishop Euplectes orix and Thick-billed Weaver Amblyospiza albifrons, and a domesticated species, the Bengalese Finch Lonchura domestica, were measured and compared using giving-up densities (the amount of food remaining following patch exploitation) in experimental food patches. Foraging efficiency was quantified using giving-up densities by offering individual birds equal foraging opportunities. A low giving-up density displays the ability of a forager to profitably harvest food at low resource densities and to gainfully exploit the foraging opportunities overlooked by a less efficient forager. Ten individuals of each of the five species were allowed to forage on six different seed types. Thick-billed Weavers had significantly lower giving-up densities for all seed types except the smallest, namely red manna. Bronze Mannikins showed the converse trend, foraging most efficiently on the smallest seeds. The results of the present study revealed that Thick-billed Weavers were the most efficient foragers (i.e. had the lowest giving-up densities on seeds in feeding trays).  相似文献   

4.
B. Walther  A. Gosler 《Oecologia》2001,129(2):312-320
To maximize fitness, many animals must trade off their need to forage efficiently against their need to avoid predators. We studied such a trade-off in four species of tits (Paridae) in a forest near Oxford, UK. During winter, tits form flocks which increase feeding efficiency and reduce predation risk. These flocks feed extensively on beech (Fagus sylvatica) seeds, the abundance of which may be critical for winter survival. Because these seeds drop to the ground, where birds are exposed to sparrowhawk (Accipiter nisus) attack, tits need to trade off their need to find seeds against the proximity to protective cover, provided by dense clusters of hawthorn (Crataegus spp.). The quality of the beech crop differs markedly between trees and years. During a year of abundant beechmast, most tits searched for seeds close to protective cover. This 'safety-first' strategy precluded visits to superabundant food patches if they were too far from protective cover. Among beech trees near to cover, tits tended to prefer those with high seed density. Tits benefited from foraging under trees with high seed density because this correlated significantly with seed mass per square metre and because mean search times decreased with increasing seed density. Finally, we show experimentally that great tits, Parus major, can discriminate between edible (viable) and inedible (empty) seeds.  相似文献   

5.
A resource’s susceptibility to predation may be influenced by its own palatability and the palatability of its neighbors. We tested for effects of plant chemical defenses on seed survival by manipulating the frequency of palatable and less palatable sunflower seeds in food patches subject to harvest by fox squirrels (Sciurus niger) and gray squirrels (Sciurus carolinensis). We varied resource distributions at three scales: among stations (aggregates of patches ca. 50 m apart), among patches immediately adjacent to each other, and within patches. When food patches were segregated into high-palatability and low-palatability stations (Experiment 1), seeds suffered greater mortality at stations with high levels of palatable seeds. In the same experiment, within patches, squirrels selected strongly for palatable seeds over less palatable seeds. When high- and low-palatability food patches were placed together at the same stations (Experiment 2), increasing densities of co-occurring palatable seeds amplified the mortality of less palatable seeds, indicating “shared doom.” When palatable and less palatable seeds were partitioned into micropatches (Experiment 3), associational effects disappeared, as predicted. Furthermore, selectivity in less palatable patches increased as the initial densities of palatable seeds increased, and selectivity in palatable patches decreased as the initial densities of less palatable seeds increased. Foraging theory predicts associational effects among prey that vary in palatability. Our results show how the type and magnitude of associational effects emerge from the interplay among the spatial scale of prey heterogeneity, the diet selection strategy, and the scale-dependent foraging responses of the consumer.  相似文献   

6.
Richard L. Hutto 《Oecologia》1978,33(1):115-126
Summary Laboratory feeding experiments were conducted with Dipodomys ordii and Perognathus flavus in an attempt to discover a mechanism which might result in seed size selection. There was no marked difference in the proportions of four seed types collected whether the rodents foraged in the presence or absence of one another. However, analysis of the variability in weight of each of the seed types collected by the two species showed that when alone, the larger kangaroo rat was less effective at harvesting all of a uniformly distributed mixture of seeds. When in the presence of one another both species could harvest enough of the mixed, uniformly distributed seed to coexist indefinitely, but when the food source was presented as four large clumps the kangaroo rat's foraging effectiveness increased tremendously so that the pocked mouse was almost entirely unable to harvest any seed. These data, in light of mobility differences between large and small heteromyids, suggest a mechanism whereby the larger, more mobile kangaroo rats forage for the most readily available (large or clumped) seeds over a relatively large area. The smaller pocket mice, by virtue of their relative efficiency in harvesting seeds can utilize the less detectable seeds which are energetically too demanding for the larger kangaroo rats to harvest. Behavioral dominance of the larger animals may help prevent the smaller from utilizing the most readily available seeds. The patterns of seed size and foraging site selection described in the literature may be easily accounted for by this difference in foraging strategy.  相似文献   

7.
Food selection by foragers is sensitive to the availability of resources, which may vary along geographical gradients. Hence, selectivity of food types by foragers is expected to track these resource gradients. Here we addressed this hypothesis and asked if foraging decisions of seed-eating ants differ along a geographic gradient of habitat productivity. The study was carried out for two years at five sites along a natural climatic gradient, ranging from arid to Mediterranean, where plant productivity varies six-fold across a short geographic distance of 250 km. We found that in ant colonies of the genus Messor, collective foraging decisions differed along the gradient. Specifically, at the high-productivity sites, a stronger association was found between plant seed availability and selectivity, suggesting that colonies respond more accurately to within-patch variation in food amounts. In contrast, colonies in low-productivity sites foraged in patches with higher concentration of seeds, suggesting that they respond more accurately to among-patch variation in food amounts. Moreover, at the high-productivity sites, colonies were more discriminating in their choice of food and preferred bigger seeds, while in the low-productivity sites, where smaller seeds were relatively more abundant, food collection depended mostly on seed availability. An experiment with artificial seed patches performed along the same climatic gradient, revealed no difference in food selectivity across sites when food type and availability were similar, and a general preference for bigger over medium-sized seeds. Overall, our findings suggest that resource availability is an important factor explaining food choice along a climatic gradient and imply that in low-productivity regions small-seeded species incur high predation pressure, whereas in high-productivity regions, large-seeded species suffer higher predation. This could have important consequences for plant species composition, particularly at the face of climate change, which could dramatically alter the foraging decisions of granivores.  相似文献   

8.
Summary: The ant Messor barbarus is a major seed predator on annual grasslands of the Mediterranean area. This paper is an attempt to relate the foraging ecology of this species to resource availability and to address several predictions of optimal foraging theory under natural conditions of seed harvesting.¶Spatial patterns of foraging trails tended to maximise acquisition of food resources, as trails led the ants to areas where seeds were more abundant locally. Moreover, harvesting activity concentrated on highly frequented trails, on which seeds were brought into the nest in larger numbers and more efficiently, at a higher mean rate per worker.¶The predictions of optimal foraging theory that ants should be more selective in both more resource-rich and more distant patches were tested in the native seed background. We confirm that selectivity of ants is positively related to trail length and thus to distance from the nest of foraged seeds. Conversely, we fail to find a consistent relationship between selectivity and density or species diversity of seed patches. We discuss how selectivity assessed at the colony level may depend on factors other than hitherto reported behavioural changes in seed choice by individual foragers.  相似文献   

9.
We examined the effects of seed size on patch use and diet selection for three co-existing Negev Desert granivores: Allenby's gerbil ( Gerbillus allenbyi ), greater Egyptian sand gerbil ( Gerbillus pyramidum ), and crested lark ( Galerida cristata ). We manipulated size and spatial distribution of seeds in experimental food patches and quantified foraging behavior by measuring giving-up densities (GUDs: the amount of food remaining in a resource patch following exploitation by a forager). In one experiment, we presented small (<1.4 mm in diameter cracked wheat), medium (2.0–3.3 mm), and large (>3.4 mm) seeds in separate trays; in a second, we presented small and medium seeds separately and mixed together. Gerbils had a higher handling time efficiency on smaller seeds, but a much higher encounter probability on larger seeds (20 times higher on large than medium seeds, and 2–5 times higher on medium than small seeds). This led gerbils to have significantly lower GUDs on larger seeds than smaller seeds and to harvest a higher proportion of the larger seeds. When presented with rich and poor patches, G. allenbyi tended to equalize GUDs in both patches, indicating a quitting harvest rate rule for patch exploitation. In contrast, larks appeared to use a fixed time rule for patch exploitation. For larks, seed size did not influence encounter probabilities, and they showed no seed-size selectivity. Still, larks had higher handling efficiencies on smaller than larger seeds, and consequently had a significantly lower GUD on small than medium seeds. Despite large differences between the gerbils and larks in their foraging, our results do not support species coexistence via seed-size partitioning: the larks had much higher GUDs than the gerbils on all seed sizes. Nonetheless, seed size, seed abundance, seed distribution and the animal's patch use behavior all played major roles in determining gerbils' and larks' diet selectivities and GUDs.  相似文献   

10.
Colonies of the seed-eating ant, Pogonomyrmex barbatus, compete with neighboring colonies for foraging areas. In a conflict over foraging area, what is at stake? This depends on how resources are distributed in time and space: if certain regions consistently provide particularly nutritious seed species, or especially abundant seeds, such regions will be of greater value to a colony. During the summer, seeds were taken from returning foragers in colonies located in 4 different vegetation types. There was no relation between the vegetation currently growing in the foraging area, and the species of seeds collected by ants. During the summer, ants collect mostly seeds produced in previous seasons and dispersed by wind and flooding. In 1991, colonies in all vegetation types collected mostly Bouteloua aristidoides; in 1992, Eriastrum diffusum and Plantago patagonica. There was no relation between colony density and numbers of seeds collected. Seed species collected by ants were compared in different colonies, and on different foraging trails within a colony. The results show that seed patches are distributed on the scale of distances between nests, not the smaller scale of different foraging trails of one colony. It appears that colonies are competing for any space in which to search for seeds, not competing for certain regions of consistently high value.  相似文献   

11.
We used the giving-up density (GUD) method and direct observation to study the combined effects of travel distance and microhabitat on foraging behavior of the midday gerbil (Meriones meridianus), which often acts as a central place forager. We provided animals with artificial seed trays in which dry and unhusked pumpkin seeds were mixed with fine sand. Gerbils practiced an eat-and-carry strategy in patches of bush microhabitat that were far from central places (BF patches), and tended to carry all seeds back in the other three treatments. Resource protection, predation risk avoidance and the balance between future and present value of food items may contribute to the eat-and-carry strategy. When distance was held constant, GUDs in open patches were higher than in bush patches, which was consistent with most studies. When microhabitat was held constant, GUDs in nearer patches were normally lower than in farther patches. In most cases, gerbils preferred to carry more seeds back rather than consume them immediately. We concluded that this tendency was due to the gerbils balancing the factors of future value and present value, and individual fitness and inclusive fitness.  相似文献   

12.
Summary Granivorous desert rodents of the family Heteromyidae forage nonrandomly among microhabitats that vary in substrate, seed densities, and seed species composition. To explore the hypothesis that microhabitat use is sensitive to seed patch profitability, we quantified effects of seed size (1.96 vs. 5.21 mg/seed) and density (0.4–10.6 seeds/cm2) on Dipodomys deserti harvest rates, which is a measure of profitability when expressed as mg of seed taken per min. By manipulating seed density, we created large-seed and small-seed patches of known relative profitability and exposed D. deserti individuals to pairwise choices in the laboratory and field. We used three treatment classes: 1) large-seed patches that were more profitable than small-seed patches (equal seed densities); 2) large-seed and small-seed patches that were equally profitable (small-seed densities somewhat higher): and 3) large-seed patches that were less profitable than small-seed patches (small-seed densities much higher). Harvest rate increased nearly linearly with seed density, and profitability of large-seed patches was greater than small-seed patches of the same density. Cumulative harvest from a patch increased linearly with residence time up to a plateau; this gain curve indicates that animals move systematically within patches and hence avoid resampling already depleted areas. In the laboratory, animals visited small-seed patches first more often and visited them more frequently when they were more profitable than large-seed patches. When large-seed patches were of greater or equal profitability, large-seed patches were preferred by both measures. The expressed preference for large-seed patches, when animals were presented with equally profitable patches, suggests an underlying preference for large seeds. In the field, animals depleted all patches to a constant low profitability, in accord with qualitative predictions of optimal patch use models. These results suggest that patch preferences by D. deserti are affected by the economics of seed harvest.  相似文献   

13.
Summary The influences of Colorado pinyon pine (Pinus edulis) cone crop size, cone and seed weight, cone length, number of seeds per cone, number of viable seeds, and percent viable seeds on the foraging behavior of avian seed dispersal agents were examined in field and laboratory settings. In the field, there was a significant positive relationship between cone number per tree and both the absolute number of cones and the percentage of the cone crop from which seeds were harvested. Cone weight and the number of viable seeds were also significantly related to seed harvest intensity. Laboratory experiments examined the relationship between crop size and cone characters on seed harvest by 18 Clark's Nutcrackers (Nucifraga columbiana). Nutcrackers were offered a choice of two tree types: one with 20 cones attached, and another with 10 cones attached. Significantly more birds chose to remove seeds first from the tree with 20 cones than the tree with 10 cones. In timed trials, they also harvested seeds from significantly more cones on the tree with the higher cone density. In the laboratory, cones chosen for seed removal by the nutcrackers had significantly more viable seeds, more seeds, and were longer compared to cones that were not chosen. Such discriminatory foraging behavior may increase avian foraging efficiency and result in differential reproductive success of pinyon pines. This behavior may therefore influence the evolution of pinyon pine reproductive traits.  相似文献   

14.
Romo M  Tuomisto H  Loiselle BA 《Oecologia》2004,140(1):76-85
We studied the effect of seed density on seed predation by following the fate of bat-dispersed Dipteryx micrantha (Leguminosae) seeds deposited under bat feeding roosts. The study was conducted in Cocha Cashu biological station, Amazonian Peru, during the fruiting period of Dipteryx. Predation of Dipteryx seeds in the area is mainly by large to medium-sized rodents. Seed deposits beneath bat feeding roosts were monitored for a 13-week period in an 18-ha study area. A total of 210 seed deposits were found, and on average, seed predators encountered 22% of them during any one week. About one-third of the seed deposits escaped predation, and those deposits that had relatively few seeds were more likely to go unnoticed by rodents than were deposits with many seeds. The mean seed destruction rate was 8% per week; deposits with many seeds tended to lose a smaller proportion of their seeds to seed predators than did deposits with few seeds. Regression tests for the weekly data showed that, at the beginning of the observation period, seed predation was not density-dependent. Later, when the total seed crop beneath roosts was high, the number of seeds predated per deposit was positively density-dependent, while the proportion of seeds predated was negatively density-dependent, indicating predator satiation. Seed deposits that had been visited by seed predators once had a higher probability of being revisited the week after, especially if they contained many seeds when first encountered. This indicates that the foraging behavior of rodents may be affected by their remembering the location of seed-rich patches.  相似文献   

15.
Summary The neotropical ant, Solenopsis geminata, in the moist lowlands of southeastern Mexico was most abundant in agricultural fields and early second growth habitats. It was not found within forest habitats.In addition to its foraging for insects and general scavenging, this ant also harvests seeds. Under field experimental conditions, a wide variety of small seeds, especially grasses, were taken. Nest mound size and number were greatest on plots experimentally seeded to high grass density and low on plots consisting of grass-dicot mixtures, pure dicot stands, or a vegetative grass strain incapable of seed production. Paspalum conjugatum, an important grass weed, was the most common seed encountered in seed storage chambers in the mounds. Under experimental field conditions, Solenopsis geminata reduced seed densities of P. conjugatum and the malvaceous weed, Malachra sp. by 97 percent or more. Seed densities of the composite, Bidens pilosa were unaffected.  相似文献   

16.
Secondary seed dispersal by ants (myrmecochory) is an important process in semi‐arid environments where seeds are transported from the soil surface to an ant nest. Microsites from which ants often remove seeds are the small pits and depressions made by native and exotic animals that forage in the soil. Previous studies have demonstrated greater seed retention in the pits of native than exotic animals, but little is known about how biotic factors such as secondary seed dispersal by ants affect seed removal and therefore retention in these foraging pits. We used an experimental approach to examine how the morphology of burrowing bettong (Bettongia lesueur), greater bilby (Macrotis lagotis), short‐beaked echidna (Tachyglossus aculeatus) and European rabbit (Oryctolagus cuniculus) foraging pits and ant body size influenced ant locomotion and seed removal from pits along an aridity gradient. Ants took 3.7‐times longer to emerge from echidna pits (19.6 s) and six‐times longer to emerge from bettong pits (30.5 s) than from rabbit pits (5.2 s), resulting in lower seed removal from bettong pits than other pit types. Fewer seeds were removed from pits when cages were used to exclude large body‐sized (>2 mm) ants. Few seeds were removed from the pits or surface up to aridity values of 0.5 (humid and dry sub‐humid), but removal increased rapidly in semi‐arid and arid zones. Our study demonstrates that mammal foraging pit morphology significantly affects ant locomotion, the ability of ants to retrieve seeds, and therefore the likelihood that seeds will be retained within foraging pits.  相似文献   

17.
The foraging behavior of a predator species is thought to bethe cause of short-term apparent competition among those preyspecies that share the predator. Short-term apparent competitionis the negative indirect effect that one prey species has onanother prey species via its effects on predator foraging behavior.In theory, the density-dependent foraging behavior of granivorousrodents and their preference for certain seeds are capable of inducing short-term apparent competition among seed species.In this study, I examined the foraging behavior of two heteromyidrodent species (family Heteromyidae), Merriam's kangaroo rats(Dipodomys merriami) and little pocket mice (Perognathus longimembris).In one experiment I tested the preferences of both rodent speciesfor the seeds of eight plant species. Both rodent species exhibiteddistinct but variable preferences for some seeds and avoidanceof others. However, the differences in preference appearedto have only an occasional effect on the strength of the short-term apparent competition detected in a field experiment. In anotherexperiment, I found that captive individuals of both rodentspecies had approximately equal foraging effort (i.e., timespent foraging) in patches that contained a highly preferredseed type (Oryzopsis hymenoides) regardless of seed density and the presence of a less preferred seed type (Astragalus cicer)in the patches. The rodents also harvested a large proportionof O. hymenoides seeds regardless of initial seed density;this precluded a negative indirect effect of A. cicer on O.hymenoides. But there was a negative indirect effect of O.hymenoides on A. cicer caused by rodents having a lower foragingeffort in patches that only contained A. cicer seeds than inpatches that contained A. cicer and O. hymenoides seeds. Theindirect interaction between O. hymenoides and A. cicer thusrepresented a case of short-term apparent competition thatwas non-reciprocal. Most importantly, it was caused by theforaging behavior of the rodents.  相似文献   

18.
Temporal patterns of seed use and availability in a guild of desert ants   总被引:4,自引:0,他引:4  
ABSTRACT.
  • 1 Temporal patterns of seed use were studied from late winter to autumn in three species of seed-harvesting ants in the Sonoran Desert. Measures of effective foraging activity, dietary niche breadth and dietary niche overlaps were obtained each month and were tested for correlation with estimates of the available seed resource.
  • 2 Seeds were the only numerically important type of food in the diets of all species.
  • 3 The ants partitioned the resource according to both seed species and seed size, although there was considerable overlap.
  • 4 Pheidole xerophila had the smallest forager body size and is a specialist on small seeds because it harvested them in greater proportion than their rank in the soils and expanded its diet to larger seeds only when the abundance of small seeds declined.
  • 5 When the abundance of the small seeds of Bouteloua barbata decreased, the middle-sized ant, Veromessor pergandei, showed a decrease in foraging activity, increase in niche breadth, and a decrease in overlap with P.xerophila.
  • 6 Seed size preferences of V.pergandei did not vary seasonally, except that during the month of highest seed abundance, V.pergandei showed no size preference.
  • 7 Pogonomyrmex rugosus was the largest ant; it preferred larger seeds and was inactive when small seeds were most abundant. Seasonal foraging activity and niche parameters were random in relation to seed abundance.
  • 8 We suggest that nocturnal foraging by P.rugosus during the summer months was a response to interference with diurnal foraging by either predation frorn horned lizards or competition from V.pergandei.
  • 9 Seasonal abundance of small seeds explains most of the seasonal foraging patterns of P.xerophila and V.pergandei. The summertime abundance of larger seeds during years of adequate precipitation may account for the seasonal activity patterns of P.rugosus.
  相似文献   

19.
南方红豆杉(Taxus chinensis)在我国南方地区多分布在村落附近的斑块生境中,成熟后的种子直接落在母树下或被鸟类等动物搬运至其他斑块中。林下地面种子会被地面活动的动物搬运,继而影响种子命运及种群更新。于2016年、2017年南方红豆杉果期,在浙江天目山一个红豆杉种群分布地(临安市桐坑村),采用野外种子摆放实验的方法研究了动物对地面种子的搬运情况。结果表明:啮齿类动物取食是南方红豆杉地面种子消失的主要原因,但种子消失率在斑块间及边缘生境中的差异较大。母树林和竹林是啮齿类动物的主要觅食生境,两种生境的动物取食率明显高于山核桃种植园。边缘生境成为啮齿类斑块间移动的通道,而非觅食场所。4种啮齿类动物中,淡腹松鼠(Callosciurus pygerythrus)在母树林斑块以外的生境中出现频率最高,而其他地面搬运者回避利用山核桃种植园,仅在母树林和竹林斑块中搬运南方红豆杉地面种子。可见,斑块生境中动物改变了南方红豆杉地面种子的空间沉积格局,进而影响植物种群的更新。  相似文献   

20.
Summary The impact of endophytic fungus-infected seeds on seed predators is poorly understood. In this multiple trophic level investigation, seed preference experiments were conducted to determine whether five species of passerines (dark-eyed juncos, Junco hyemalis; American tree sparrows, Spizella arborea; song sparrows, Melospiza melodia; chipping sparrows, Spizella pusilla; and house sparrows, Passer domesticus) recognize and preferentially consume noninfected (NI) over infected (I) seeds of tall fescue (Festuca arundinacea). We predicted that the birds would refrain from eating I seeds because those seeds contain high concentrations of fungal alkaloids. When given a choice of NI fescue seeds and control seeds (millet), all bird species showed a significant preference for millet. However, individuals of all species consumed some NI seeds. When given a choice of NI and I fescue seeds, all species except the chippig sparrow ate significatly more NI than I fescue seed and the chipping sparrow showed the same trend. Thus, birds were able to distinguish between the two seed types and preferred NI seeds in choice tests. Additional experiments investigated weight changes in dark-eyed juncos fed diets containing different proportions of millet, NI, and I fescue seed. Significant differences in weight loss were observed for the various diets. Juncos showed greater weight loss when the proportion of fescue seed, especially the proportion of I seed, in their diet was greater. The potential significance of the finding that abundant grass seeds are made unavailable to predators by fungal infection is discussed in relation to foraging and competition in avian communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号