首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A purified alkaline thermo-tolerant bacterial lipase from Pseudomonas aeruginosa MTCC-4713 was immobilized on a poly (AAc-co-HPMA-cl-MBAm) hydrogel. The hydrogel-bound lipase achieved 93.6% esterification of ethanol and propionic acid (300 mM: 100 mM) into ethyl propionate at temperature 65 degrees C in 3 h in the presence of a molecular sieve (3 angstroms). In contrast, hydrogel-immobilized lipase pre-exposed to 5 mM of HgCl2 orNH4Cl resulted in approximately 97% conversion of reactants in 3 h into ethyl propionate under identical conditions. The salt-exposed hydrogel was relatively more efficient in repetitive esterification than the hydrogel-bound lipase not exposed to any of the cations. Moreover, bound lipase exposed Hg2+ or NH4+ ions showed altered specificity towards p-nitrophenyl esters and was more hydrolytic towards higher C-chain p-nitrophenyl esters (p-nitrophenyl laurate and p-nitrophenyl palmitate with C 12 and C 16 chain) than the immobilized lipase not exposed to any of the salts. The later showed greater specificity towards p-nitrophenyl caprylate (C 8).  相似文献   

2.
A psychrotrophic strain 7195 showing extracellular lipolytic activity towards tributyrin was isolated from deep-sea sediment of Prydz Bay and identified as a Psychrobacter species. By screening a genomic DNA library of Psychrobacter sp. 7195, an open reading frame of 954 bp coding for a lipase gene, lipA1, was identified, cloned, and sequenced. The deduced LipA1 consisted of 317 amino acids with a molecular mass of 35,210 kDa. It had one consensus motif, G-N-S-M-G (GXSXG), containing the putative active-site serine, which was conserved in other cold-adapted lipolytic enzymes. The recombinant LipA1 was purified by column chromatography with DEAE Sepharose CL-4B, and Sephadex G-75, and preparative polyacrylamide gel electrophoresis, in sequence. The purified enzyme showed highest activity at 30 degrees C, and was unstable at temperatures higher than 30 degrees C, indicating that it was a typical cold-adapted enzyme. The optimal pH for activity was 9.0, and the enzyme was stable between pH 7.0-10.0 after 24 h incubation at 4 degrees C. The addition of Ca2+ and Mg2+ enhanced the enzyme activity of LipA1, whereas the Cd2, Zn2+, Co2+, Fe3+, Hg2+, Fe2+, Rb2+, and EDTA strongly inhibited the activity. The LipA1 was activated by various detergents, such as Triton X-100, Tween 80, Tween 40, Span 60, Span 40, CHAPS, and SDS, and showed better resistance towards them. Substrate specificity analysis showed that there was a preference for trimyristin and p-nitrophenyl myristate (C14 acyl groups).  相似文献   

3.
Mai V  Wiegel J  Lorenz WW 《Gene》2000,247(1-2):137-143
The gene for the bifunctional xylosidase-arabinosidase (xarB) from the thermophilic anaerobe Thermoanaerobacter ethanolicus JW200 was cloned, sequenced, and expressed in Escherichia coli (Genebank Accession No. AF135015). Analysis of the recombinant enzyme revealed activity against multiple substrates with the highest affinity towards p-nitrophenyl beta-D-xylopyranoside (pNPX) and highest activity against p-nitrophenyl alpha-L-arabinopyranoside (pNPAP), respectively. Thus, we classify this enzyme as a bifunctional xylosidase-arabinosidase. Even though both sequences are 96% identical on the amino acid level, excluding the amino-terminal end, a frame-shift mutation in the 5' region of the gene in T. brockii ATCC 33075 and a deletion in a downstream open reading frame in T. ethanolicus seem to have occurred through evolutionary divergence of these two species. This represents an interesting phenomenon of molecular evolution of bacterial species, as PCR analysis of the region around the deletion indicates that the deletion is not present in T. brockii ssp. finnii and T. brockii ssp. brockii type strain HTD4.  相似文献   

4.
At temperatures between 45 and 50 C, staphylococcal acid phosphatase purified 44-fold had maximal activity at pH 5.2 to 5.3. However, the enzyme was most stable in the alkaline range (pH 8.5 to 9.5) at temperatures below 50 C. Iodoacetate and ethylenediamine-tetraacetic acid were effective inhibitors, whereas mercaptoethanol and Cu(2+) acted as stimulators. The energy of activation for hydrolytic cleavage of the synthetic substrate, p-nitrophenyl phosphate, was 19.5 Kcal/mole. K(m) for the same substrate was 4.5 x 10(-4)m. The purified enzyme was most active against the substrates p-nitrophenyl phosphate and glyceraldehyde 3-phosphate.  相似文献   

5.
S F Lin  C M Chiou  C M Yeh    Y C Tsai 《Applied microbiology》1996,62(3):1093-1095
An extracellular alkaline lipase of alkalophilic Pseudomonas pseudoalcaligenes F-111 was purified to homogeneity. The apparent molecular weight determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 32,000, and the isoelectric point was 7.3. With p-nitrophenyl esters as its substrates, the enzyme shows preference for C12 acyl and C14 acyl groups. It was stable in the pH range of 6 to 10, which coincides with the optimum pH range.  相似文献   

6.
An acid phosphatase, designated SapS, hydrolyzing p-nitrophenyl phosphate (pNPP), was identified and characterized from the culture supernatant of a Staphylococcus aureus strain isolated from vegetables. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the protein indicated an estimated molecular mass of 30 kDa. The enzyme displayed optimum activity at 40 degrees C and pH 5. Characterization of the phosphatase in a reconstitution assay showed that MgCl2 and Triton X-100, respectively, restored maximal activity, but not CaCl2 The phosphatase activity was affected by EDTA and sodium molybdate. The DNA sequence encoding SapS was cloned and sequenced. The putative acid phosphatase gene encodes a protein of 296 amino acids with a 31-residue signal peptide. Database searches revealed significant structural homology of SapS to several proteins belonging to the bacterial class C family of nonspecific acid phosphatases. Comparison of the sequences indicated that despite a low level of overall conservation between the proteins, four conserved sequence motifs could be identified.  相似文献   

7.
A gene coding for a thermostable esterase was isolated by functional screening of Escherichia coli cells that had been transformed with fosmid environmental DNA libraries constructed with metagenomes from thermal environmental samples. The gene conferring esterase activity on E. coli grown on tributyrin agar was composed of 936 bp, corresponding to 311 amino acid residues with a molecular mass of 34 kDa. The enzyme showed significant amino acid similarity (64%) to the enzyme from a hyperthermophilic archaeon, Pyrobaculum calidifontis. An amino acid sequence comparison with other esterases and lipases revealed that the enzyme should be classified as a new member of the hormone-sensitive lipase family. The recombinant esterase that was overexpressed and purified from E. coli was active above 30 degrees C up to 95 degrees C and had a high thermal stability. It displayed a high degree of activity in a pH range of 5.5 to 7.5, with an optimal pH of approximately 6.0. The best substrate for the enzyme among the p-nitrophenyl esters (C(4) to C(16)) examined was p-nitrophenyl caproate (C(6)), and no lipolytic activity was observed with esters containing an acyl chain length of longer than 10 carbon atoms, indicating that the enzyme is an esterase and not a lipase.  相似文献   

8.
Ubiquitin was isolated from bovine erythrocytes by a relatively simple procedure involving extraction with chloroform and ethanol, chromatography on DEAE-cellulose, and gel filtration. Amino acid and partial sequence analyses showed it to be identical to previously isolated material. Ubiquitin released p-nitrophenolate from p-nitrophenyl acetate, but did not cleave other esterase substrates that were tested. It had a turnover number of 116 mmol for p-nitrophenyl acetate at pH 7.7 and 30 degrees C, and this activity was relatively stable to heat treatment. Electrophoretic studies indicated that the ubiquitin was sequentially acetylated by p-nitrophenyl acetate, as judged by the appearance of more anodically migrating components. The reactions of ubiquitin with p-nitrophenyl acetate at pH 7.0 were biphasic and consisted of (a) an initial phase, during which the release of p-nitrophenol resulted from monoacetylation of the ubiquitin and from ubiquitin-catalyzed hydrolysis of the ester; and (b) a second phase, during which the release of p-nitrophenol resulted only from the breakdown and reformation of the acetyl-enzyme complex. Ubiquitin also showed CO2 hydration activity and could be localized following gel electrophoresis by the CO2-bromthymol blue staining method. The strong inhibitor of carbonic anhydrase, acetazolamide, also inhibited the CO2 hydration activity and p-nitrophenyl acetate activity of ubiquitin. An antibody against this protein did not precipitate bovine carbonic anhydrase II. The esterase activity of ubiquitin was much higher than those previously reported for the carbonic anhydrases.  相似文献   

9.
We have found that the hyperthermophilic archaeon Pyrobaculum calidifontis VA1 produced a thermostable esterase. We isolated and sequenced the esterase gene (est(Pc)) from strain VA1. est(Pc) consisted of 939 bp, corresponding to 313 amino acid residues with a molecular mass of 34,354 Da. As est(Pc) showed significant identity (30%) to mammalian hormone-sensitive lipases (HSLs), esterase of P. calidifontis (Est) could be regarded as a new member of the HSL family. Activity levels of the enzyme were comparable or higher than those of previously reported enzymes not only at high temperature (6,410 U/mg at 90 degrees C), but also at ambient temperature (1,050 U/mg at 30 degrees C). The enzyme displayed extremely high thermostability and was also stable after incubation with various water-miscible organic solvents at a concentration of 80%. The enzyme also exhibited activity in the presence of organic solvents. Est of P. calidifontis showed higher hydrolytic activity towards esters with short to medium chains, with p-nitrophenyl caproate (C(6)) the best substrate among the p-nitrophenyl esters examined. As for the alcoholic moiety, the enzyme displayed esterase activity towards esters with both straight- and branched-chain alcohols. Most surprisingly, we found that this Est enzyme hydrolyzed the tertiary alcohol ester tert-butyl acetate, a feature very rare among previously reported lipolytic enzymes. The extreme stability against heat and organic solvents, along with its activity towards a tertiary alcohol ester, indicates a high potential for the Est of P. calidifontis in future applications.  相似文献   

10.
An extracellular lipase, LipA, extracted from Acinetobacter sp. RAG-1 grown on hexadecane was purified and properties of the enzyme investigated. The enzyme is released into the growth medium during the transition to stationary phase. The lipase was harvested from cells grown to stationary phase, and purified with 22% yield and > 10-fold purification. The protein demonstrates little affinity for anion exchange resins, with contaminating proteins removed by passing crude supernatants over a Mono Q column. The lipase was bound to a butyl Sepharose column and eluted in a Triton X-100 gradient. The molecular mass (33 kDa) was determined employing SDS/PAGE. LipA was found to be stable at pH 5.8-9.0, with optimal activity at 9.0. The lipase remained active at temperatures up to 70 degrees C, with maximal activity observed at 55 degrees C. LipA is active against a wide range of fatty acid esters of p-nitrophenyl, but preferentially attacks medium length acyl chains (C6, C8). The enzyme demonstrates hydrolytic activity in emulsions of both medium and long chain triglycerides, as demonstrated by zymogram analysis. RAG-1 lipase is stabilized by Ca2+, with no loss in activity observed in preparations containing the cation, compared to a 70% loss over 30 h without Ca2+. The lipase is strongly inhibited by EDTA, Hg2+, and Cu2+, but shows no loss in activity after incubation with other metals or inhibitors examined in this study. The protein retains more than 75% of its initial activity after exposure to organic solvents, but is rapidly deactivated by pyridine. RAG-1 lipase offers potential for use as a biocatalyst.  相似文献   

11.
Sun SY  Xu Y 《Bioresource technology》2009,100(3):1336-1342
Rhizopus chinensis was able to produce synthetic lipases under both solid-state and submerged fermentations. These lipases were extracted from cell membrane using Triton X-100, and purified to homogeneity through ammonium sulfate precipitation, hydrophobic interaction chromatography and gel filtration chromatography. Judging from SDS-PAGE, the specific synthetic lipases associated with SSF (named as SSL) and SmF (named as SML) were different in the apparent molecular mass (62 and 40kDa). In term of hydrolytic activity, both enzymes exhibited maximum values at pH 8.0 and 40 degrees C; SSL appeared to be more pH tolerant and thermostable than SML. PMSF negligibly affected SSL but strongly reduced the activity of SML. Both enzymes showed clear preference for long-chained p-nitrophenyl esters, yielding maximum activity towards p-nitrophenyl palmitate (with SSL) and p-nitrophenyl laurate (with SML). In term of synthetic activity, lyophilized enzymes gave the highest values both at 30 degrees C, but at different pH memories (7.5 for SSL and 6.5 for SML). Most of ethyl esters synthesized by the two enzymes achieved good yields (>90%), and tetradecanoic acid and laurate acid separately served as the best acyl donors.  相似文献   

12.
Yeast fatty acid synthase: structure to function relationship   总被引:5,自引:0,他引:5  
N Singh  S J Wakil  J K Stoops 《Biochemistry》1985,24(23):6598-6602
The yeast fatty acid synthase is a multifunctional enzyme composed of two nonidentical subunits in an alpha 6 beta 6 complex that is active in synthesizing fatty acids. The seven catalytic activities required for fatty acid synthesis are divided between the alpha and beta subunits such that the alpha 6 beta 6 complex has six complements of each activity. It has been proposed that these are organized into six centers for fatty acid synthesis. There are different opinions regarding the operation of these centers in the alpha 6 beta 6 complex, on view being that they are functionally independent and the other proposes half-sites activity for the complex. We have attempted to distinguish between these proposals by the most direct method of active site titration, i.e., quantitation of fatty acyl product in the absence of turnover. This was accomplished by using p-nitrophenyl thioacetate and thiophenyl malonate (in place of the coenzyme A analogues) as substrates along with NADPH, thereby depriving the yeast synthase of coenzyme A required to release product as fatty acyl coenzyme A. The amount of fatty acyl product formed was quantitated by gas-liquid chromatography, as well as by direct estimation of radioactivity in the product when p-nitrophenyl thio [1-14C] acetate was used as a substrate. In both cases, a stoichiometry of close to six was found for mole of fatty acid synthesized per mole of alpha 6 beta 6 complex. This indicates that there are six functional centers for fatty acid synthesis in the multifunctional yeast alpha 6 beta 6 fatty acid synthase and that these centers operate independently.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
Extracellular and cell-bound esterases produced by Acidiphilium sp. AIU 409 were homogeneously purified from culture broth and cells, respectively, and some properties were investigated. Both esterases more rapidly hydrolyzed p-nitrophenyl acyl esters containing long-chain fatty acids from C 8:0 to C 18:0 than those containing short-chain fatty acids from C 2:0 to C 6:0. The Km values for p-nitrophenyl long-chain fatty acid esters from C 8:0 to C 18:0 were approximately 1.3-1.5 mM. The enzymes were stable at 50 degrees C for 2 days between pH 3.0 and 6.5, and optimum pH and temperature were 5.0 and 70 degrees C, respectively. Enzyme activity was inhibited by phenylmethylsulfonyl fluoride and SDS. The molecular mass of both enzymes was estimated to be approximately 64 kDa by SDS-PAGE. The 23 amino acid sequence from the NH(2)-terminus was also the same in both enzymes. These results suggest that extracellular esterase might be composed of the same components as cell-bound esterase.  相似文献   

15.
16.
The predicted protein product of open reading frame slr0328 from Synechocystis sp. PCC 6803, SynPTP, possesses significant amino acid sequence similarity with known low molecular weight protein tyrosine phosphatases (PTPs). To determine the functional properties of this hypothetical protein, open reading frame slr0328 was expressed in Escherichia coli. The purified recombinant protein, SynPTP, displayed its catalytic phosphatase activity towards several tyrosine, but not serine, phosphorylated exogenous protein substrates. The protein phosphatase activity of SynPTP was inhibited by sodium orthovanadate, a known inhibitor of tyrosine phosphatases, but not by okadaic acid, an inhibitor for many serine/threonine phosphatases. Kinetic analysis indicated that the K(m) and V(max) values for SynPTP towards p-nitrophenyl phosphate are similar to those of other known bacterial low molecular weight PTPs. Mutagenic alteration of the predicted catalytic cysteine of PTP, Cys(7), to serine abolished enzyme activity. Using a combination of immunodetection, mass spectrometric analysis and mutagenically altered Cys(7)SerAsp(125)Ala-SynPTP, we identified PsaD (photosystem I subunit II), CpcD (phycocyanin rod linker protein) and phycocyanin-α and -β subunits as possible endogenous substrates of SynPTP in this cyanobacterium. These results indicate that SynPTP might be involved in the regulation of photosynthesis in Synechocystis sp. PCC 6803.  相似文献   

17.
The gene (lipA) encoding the extracellular lipase and its downstream gene (lipB) from Vibrio vulnificus CKM-1 were cloned and sequenced. Nucleotide sequence analysis and alignments of amino acid sequences suggest that Lip Ais a member of bacterial lipase family I.1 and that LipB is a lipase activator of LipA. The active LipA was produced in recombinant Escherichia coli cells only in the presence of the lipB. In the hydrolysis of p-nitrophenyl esters and triacylglycerols, using the reactivated LipA, the optimum chain lengths for the acyl moiety on the substrate were C14 for ester hydrolysis and C10 to C12 for triacylglycerol hydrolysis.  相似文献   

18.
Phospholipases can catalyze the hydrolysis of one or more ester and phosphodiester bonds and have a considerable interest in the food, oil leather and pharmaceutical industries. In this report, a lysophospholipase gene from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (LysoPL-tk) was cloned. The gene of 783?bp encodes a 260-amino acid protein with a molecular mass of 29?kDa. LysoPL-tk has a consensus motif (GxSxG) and a catalytic triad (S, D, H) of esterases in the deduced amino acid sequence. LysoPL-tk was expressed in Escherichia coli and purified to homogeneity. The enzyme can degrade substrates with both short and long acyl chain lengths. The apparent K (m) value for p-nitrophenyl butyrate was 607.1?μM with V (max) values of 95.5?U/mg. The enzyme was active at a broad range of pH (5-8) and temperatures (70-95?°C) with the optimum pH and temperature being 8.0 and 85?°C, respectively. The high yield, broad substrate range along with its thermo-stability indicates that LysoPL-tk is a potential enzyme in industrial application.  相似文献   

19.
We report the isolation and nucleotide (nt) sequence determination of a cDNA encoding the peroxisomal trifunctional beta-oxidation enzyme hydratase-dehydrogenase-epimerase (HDE) from the yeast Candida tropicalis pK233. Poly(A)+RNA isolated from C. tropicalis cells grown in oleic acid medium was used to construct a cDNA library in lambda gt11. The library was screened with a polyclonal antiserum against HDE. A recombinant was confirmed to encode HDE by hybridization-selection translation and immunoprecipitation. The HDE cDNA (HDE) has a single open reading frame of 2718 nt, encoding a protein of 905 amino acids, not including the initiator methionine. The Mr of the protein is 99,350. A partial gene duplication is believed to have occurred in the evolution of the HDE gene. Codon utilization in the gene is not random, with 86.0% of the amino acids specified by 23 preferentially used codons, a situation similar to that found in genes encoding peroxisomal catalase and the various fatty acyl-CoA oxidases from C. tropicalis. The increase in HDE activity in C. tropicalis cells grown in oleic acid medium as opposed to glucose medium is due, at least in part, to increased HDE-specific mRNA levels.  相似文献   

20.
Formation of fatty acid ethyl esters (FAEEs, catalyzed by FAEE synthase) has been implicated in the pathogenesis of chronic pancreatitis. In previous studies, we demonstrated that FAEE synthase, purified from rat liver microsomes, is identical to rat liver carboxylesterase (pI 6.1), and structurally and functionally different than that from pancreas. In this study, we purified and characterized rat pancreatic microsomal FAEE synthase, and determined its relationship with rat pancreatic cholesterol esterase (ChE). Since most of the serine esterases express p-nitrophenyl acetate (PNPA)-hydrolyzing activity as well as synthetic activity to form fatty acid esters or amides with a wide spectrum of alcohols and amines, respectively, we used PNPA-hydrolyzing activity to monitor the purification of FAEE synthase during various chromatographic purification steps. Synthesizing activity towards FAEEs, fatty acid methyl esters, and fatty acid anilides was measured only in the pooled fractions. At each step of purification (ammonium sulfate saturation, Q Sepharose XL, and heparin-agarose column chromatographies, and high performance liquid chromatography (anion exchange and gel filtration)) synthetic as well as hydrolytic activities copurified. Using ethanol, methanol, or aniline as substrates, the ester or anilide synthesizing activity of the purified protein was found to be 8709, 13000, and 2201 nmol/h/mg protein, respectively. The purified protein displayed a single band with an estimated molecular mass of approximately 68 kD upon SDS-PAGE under reduced denaturing conditions, cross-reacted with antisera against rat pancreatic ChE and showed 100% N-terminal sequence homology of the first 15 amino acids to that of rat pancreatic ChE. These results suggest that the purified protein has broad substrate specificity towards the conjugation of endogenous long chain fatty acids with substrates having hydroxyl and amino groups and is identical to ChE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号