首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many melanocyte or skin equivalent models have been used to evaluate the potential efficacy of melanogenic compounds to regulate pigmentation, but there has been great variation in results, partially stemming from the use of different cell lines and diverse conditions for the melanogenic assays. In an earlier report, we optimized a microtiter format assay system to screen potential bioactive compounds using immortalized melan-a melanocytes. That assay system, termed the STOPR protocol, allowed effects on melanocyte proliferation and differentiation to be assessed in a highly sensitive, reproducible, and cost-effective manner. However, in the skin and hair, melanocytes interact with keratinocytes, fibroblasts, and other cell types, and testing of putative bioactive compounds on melanocytes alone in culture does not allow one to observe the interactions with those other cell types, such as would occur in vivo. Therefore, we developed a melanocyte-keratinocyte coculture protocol that allows testing of compounds for potential effects on pigmentation in a more physiologically relevant context. It is a sensitive, reproducible, and reliable model for testing melanogenic regulators, and we have standardized it with known melanogenic inhibitors (hydroquinone, arbutin, kojic acid, and niacinamide) and stimulators (alpha-melanocyte-stimulating hormone, 8-methoxypsoralen, and 3,4-dihydroxyphenylalanine). This coculture system allows for large-scale screening of candidate compounds in conjunction with the STOPR protocol and provides a more physiologically relevant system to study melanocyte-keratinocyte interactions and to elucidate the regulatory mechanisms of melanogenic compounds.  相似文献   

2.
Reconstituted 3-dimensional human skin equivalents containing melanocytes and keratinocytes on an artificial dermal substitute are gaining popularity for studies of skin metabolism because they exhibit morphological and growth characteristics similar to human epidermis. In this study, we show that such a pigmented epidermis model can be used to assess the regulation of pigmentation by known melanogenic compounds. In monolayers or in melanocyte-keratinocyte co-cultures, melanocyte-keratinocyte interactions are missing or are spatially limited. The commercial skin equivalents used in this study were derived from epidermal cells obtained from donors of three different ethnic origins (African- American, Asian, and Caucasian), and they reflect those distinct skin phenotypes. We used these pigmented human epidermis models to test compounds for potential effects on pigmentation in a more physiologically relevant context, which allows further characterization and validation of interesting melanogenic factors. We used known melanogenic stimulators (alpha-melanocyte-stimulating hormone and 3,4-dihydroxyphenylalanine) and inhibitors (hydroquinone, arbutin, kojic acid, and niacinamide) and examined their effects on the production of melanin and its distribution in upper layers of the skin. Our studies indicate that commercial skin equivalents provide a convenient and cost-effective alternative to animal testing for evaluating the regulation of mammalian pigmentation by melanogenic factors and for elucidating their mechanisms of action.  相似文献   

3.
In mammalian skin, melanocyte proliferation and melanogenesis can be stimulated by keratinocytes, fibroblasts and other regulatory factors. To determine whether hydroxybenzyl alcohols (HBAs) show more inhibitory in melanocytes cultured alone or in melanocytes co-cultured with keratinocytes, we developed a murine melanocyte-keratinocyte co-culture model to investigate the pigmentation regulators in company with other melanogenic inhibitors and stimulators. It was found that the effects of HBAs and melanogenic factors were more evident in melanocytes co-cultured with keratinocytes. Keratinocytes may play a synergistic role in melanocyte melanogenesis and influence the pigment production. The tests in the co-culture model also imply that the inhibitory effects of HBAs on melanogenesis are due to the direct inhibition of melanosomal tyrosinase activity. HBAs showed a low cytotoxicity. The eventual results proved that HBAs are promising and safe agents for skin whitening in melanocyte alone and in co-culture systems. The co-culture model provides a more physiologically realistic condition to study the interaction between melanocytes and keratinocytes, which enables a reliable screening system for depigmenting compounds.  相似文献   

4.
In mammalian skin, melanocyte proliferation and melanogenesis can be stimulated by keratinocytes, fibroblasts and other regulatory factors. To determine whether hydroxybenzyl alcohols (HBAs) show more inhibitory in melanocytes cultured alone or in melanocytes co-cultured with keratinocytes, we developed a murine melanocyte–keratinocyte co-culture model to investigate the pigmentation regulators in company with other melanogenic inhibitors and stimulators. It was found that the effects of HBAs and melanogenic factors were more evident in melanocytes co-cultured with keratinocytes. Keratinocytes may play a synergistic role in melanocyte melanogenesis and influence the pigment production. The tests in the co-culture model also imply that the inhibitory effects of HBAs on melanogenesis are due to the direct inhibition of melanosomal tyrosinase activity. HBAs showed a low cytotoxicity. The eventual results proved that HBAs are promising and safe agents for skin whitening in melanocyte alone and in co-culture systems. The co-culture model provides a more physiologically realistic condition to study the interaction between melanocytes and keratinocytes, which enables a reliable screening system for depigmenting compounds.  相似文献   

5.
The relationship between melanogenesis and the expression of melanocyte stimulating hormone (MSH) receptors on the surface of melanocytes was examined using sublines generated from the melanotic JB/MS melanoma. JB/MS cells were propagated in long term culture to allow for phenotypic drift in their characteristics of differentiation, and then were cloned; the cloned cells ranged from well differentiated and pigmented to undifferentiated and amelanotic. Spontaneous and MSH-induced melanogenesis in these different lines was measured and correlated with the number of MSH receptors expressed. After 6 months of in vitro culture, the ability of the cells to respond to MSH was significantly reduced, as were the number of MSH receptors expressed; the cells had reduced pigmentation and were relatively undifferentiated histologically. Subsequently, clonally-derived pigmented cells were found to have numbers of surface MSH receptors (approximately 60,000 per cell) and levels of melanogenic activity similar to the original JB/MS cell line. However, an amelanotic clone had an even more dramatically reduced level of pigmentation which correlated with a further decrease in the expression of MSH receptors (less than 1,000 per cell) and the production of a potent melanogenic inhibitor. We also examined the responses of these various sublines to alpha, beta, and gamma-interferons and found significant heterogeneity in their abilities to respond to these cytokines. This study clearly shows that there is a direct correlation between melanogenesis and the expression of MSH receptors on the surface of melanocytes, and that melanogenic inhibitors may be critically involved in the regulation of mammalian pigmentation.  相似文献   

6.
The switch between the synthesis of eu- and pheomelanins is modulated by the interaction of two paracrine signaling molecules, alpha-melanocyte stimulating hormone (MSH) and agouti signal protein (ASP), which interact with melanocytes via the MSH receptor (MC1R). Comparison of the primary sequence of ASP with the known MSH pharmacophore provides no suggestion about the putative bioactive domain(s) of ASP. To identify such bioactive motif(s), we synthesized 15-mer peptides that spanned the primary sequence of ASP and determined their effects on the melanogenic activities of murine melanocytes. Northern and Western blotting were used, together with chemical analysis of melanins and enzymatic assays, to identify three distinct bioactive regions of ASP that down-regulate eumelanogenesis. The decrease in eumelanin production was mediated by down-regulation of mRNA levels for tyrosinase and other melanogenic enzymes, as occurs in vivo, and these effects were comparable to those elicited by intact recombinant ASP. Shorter peptides in those motifs were synthesized and their effects on melanogenesis were further investigated. The amino acid arginine, which is present in the MSH peptide pharmacophore (HFRW), is also in the most active domain of ASP (KVARP). Our data suggest that lysines and an arginine (in motifs such as KxxxxKxxR or KxxRxxxxK) are important for the bioactivity of ASP. Identification of the specific ASP epitope that interacts with the MC1R has potential pharmacological applications in treating dysfunctions of skin pigmentation.  相似文献   

7.
8.
Melanocytes cultured on collagen-coated Cytodex 3 microcarrier Sephadex beads caused remarkable pigmentation of the beads during the period of culture when optimal density was reached. Electron microscopy of melanocytes on the microcarriers revealed that the cells and their dendrites invaginate into the microcarrier surface layer. Removal of the cells by trypsinization showed that some pigment granules were left on the carrier surface and within the cavities present on the microcarrier surface. In order to investigate whether the pigmentation of the microcarriers could be a result of indole intermediates of melanogenesis present in the culture medium, extracts were studied by gas chromatography/mass spectrometry for the presence of these compounds. Two compounds (5,6-dihydroxyindole-2-carboxylic acid and 6-hydroxy-5-methoxyindole-2-carboxylic acid) so far have been identified in the medium extracts. Results indicate that microcarrier culture of melanocytes can serve as an interesting model for electron microscopy studies of melanocytes with regard to pigmentation and cell attachment.  相似文献   

9.
B Iyengar  R S Misra 《Acta anatomica》1987,129(3):203-205
Frozen sections of vitiliginous skin were treated with the substrates involved in melanogenesis and adrenergic activity to study the effect of changing chemical milieu on the biphasic dendritic melanocytes. The substrates used are tyrosine, DOPA, tyrosine + DOPA, dopamine, adrenalin and cupric ions. It was observed that tyrosine when used alone has a weak melanogenic reaction while DOPA and tyrosine + DOPA show a prominent activity. Adrenalin and dopamine inhibit the neural limb and enhance melanogenesis. Cupric ions on the other hand enhance the neural limb and inhibit melanogenesis. These changes are not evident in the non-dendritic melanocytes. Thus the highly dendritic melanocytes are at a lower state of differentiation. These biphasic cells are more sensitive to changes in the chemical milieu.  相似文献   

10.
UV-induced DNA damage can lead to melanoma, the most dangerous form of skin cancer. Understanding the mechanisms employed by melanocytes to protect against UV is therefore a key issue. In melanocytes, catalase is the main enzyme responsible for degrading hydrogen peroxide and we have previously shown that that low basal levels of catalase activity are associated with the light phototype in in vitro and ex vivo models. Here we investigate the possible correlation between its activity and melanogenesis in primary cultures of human melanocytes. We show that while the total melanin concentration is directly correlated to the level of pigmentation, the more the degree of pigmentation increased, the lower the proportion of pheomelanin present. Moreover, in human melanocytes in vitro, catalase-specific mRNA, protein and enzymatic activity were all directly correlated with total cellular melanin content. We also observed that immediately after a peroxidative treatment, the increase in reactive oxygen species was inversely associated with pigmentation level. Darkly pigmented melanocytes therefore possess two protective strategies represented by melanins and catalase activity that are likely to act synergistically to counteract the deleterious effects of UV radiation. By contrast, lightly pigmented melanocytes possess lower levels of melanogenic and catalase activity and are therefore more susceptible to accumulate damage after UV exposition.  相似文献   

11.
Striking differences are observed in the melanogenic response of normal human melanocytes to UVA and UVB irradiation depending on culture conditions and the presence of keratinocytes. Exposure of melanocytes co‐cultured with keratinocytes to UVB irradiation triggered, already at low doses (5 mJ/cm2), an increase in melanin synthesis whereas in melanocyte mono‐cultures, UVB doses up to 50 mJ/cm2 had no melanogenic effect. Unlike UVB, UVA exposure caused the same melanogenic response in both mono‐ and co‐cultures. Removing certain keratinocyte growth factors from the co‐culture medium abolished the melanogenic response to UVB, but not to UVA exposure. When integrated into the basal layer of a reconstructed human epidermis, human melanocytes similarly reacted to UVA and UVB irradiation as in vivo by increasing their production and transfer of melanin to the neighboring keratinocytes which resulted in a noticeable tanning of the reconstructed epidermis. The presence of a dense stratum corneum, known to scatter and absorb UV light, is responsible for higher minimal UVB and UVA doses required to trigger a melanogenic response in the reconstructed epidermis compared to keratinocyte–melanocyte co‐cultures. Furthermore, an immediate tanning response was observed in the pigmented epidermis following UVA irradiation. From these results we conclude that: (i) keratinocytes play an important role in mediating UVB‐induced pigmentation, (ii) UVA‐induced pigmentation is the result of a rather direct effect on melanocytes and (iii) reconstructed pigmented epidermis is the most appropriate model to study UV‐induced pigmentation in vitro.  相似文献   

12.
Cultured human melanocytes derived from different skin types responded to frequent treatment with ultraviolet (UV) light with increased melanin synthesis, decreased proliferation, and morphologic signs of aging. These effects were augmented by increased frequency of irradiation with 15.5 mJ/cm2 UV light. Stimulation of melanogenesis by UV light involved an increase in tyrosinase activity, without any change in the amounts of either tyrosinase or tyrosinase-related protein (TRP)-1, and a decrease in the amount of TRP-2, as determined by Western blot analysis. These results are different from the mechanisms by which other melanogenic agents, such as cholera toxin and isobutyl methylxanthine, stimulated melanogenesis, whereby the amounts of tyrosinase, TRP-1 and TRP-2 were increased. The decrease in the amount of TRP-2 might be significant in that it might alter the properties of the newly synthesized melanin. The UV irradiation protocol that was followed blocked melanocytes in G2-M phase of the cell cycle without compromising cellular viability. Following three rounds of UV irradiation, melanocytes could recover from the growth arrest and resume proliferation. Treatment with 0.1 μM α-melanocyte stimulating hormone (α-MSH) postirradiation enhanced the melanogenic effect of UV light and stimulated the melanocytes to proliferate. The effects of α-MSH on the UV induced responses and their implications on photocarcinogenesis are being further investigated. Analyzing the mechanisms by which UV light exposure affects normal melanocytes might lead to a better understanding of how these cells undergo malignant transformation, and why individuals with different skin types differ in their susceptibility to skin cancers.  相似文献   

13.
Striking differences are observed in the melanogenic response of normal human melanocytes to UVA and UVB irradiation depending on culture conditions and the presence of keratinocytes. Exposure of melanocytes co-cultured with keratinocytes to UVB irradiation triggered, already at low doses (5 mJ/cm2), an increase in melanin synthesis whereas in melanocyte mono-cultures, UVB doses up to 50 mJ/cm2 had no melanogenic effect. Unlike UVB, UVA exposure caused the same melanogenic response in both mono- and co-cultures. Removing certain keratinocyte growth factors from the co-culture medium abolished the melanogenic response to UVB, but not to UVA exposure. When integrated into the basal layer of a reconstructed human epidermis, human melanocytes similarly reacted to UVA and UVB irradiation as in vivo by increasing their production and transfer of melanin to the neighboring keratinocytes which resulted in a noticeable tanning of the reconstructed epidermis. The presence of a dense stratum corneum, known to scatter and absorb UV light, is responsible for higher minimal UVB and UVA doses required to trigger a melanogenic response in the reconstructed epidermis compared to keratinocyte-melanocyte co-cultures. Furthermore, an immediate tanning response was observed in the pigmented epidermis following UVA irradiation. From these results we conclude that: (i) keratinocytes play an important role in mediating UVB-induced pigmentation, (ii) UVA-induced pigmentation is the result of a rather direct effect on melanocytes and (iii) reconstructed pigmented epidermis is the most appropriate model to study UV-induced pigmentation in vitro.  相似文献   

14.
Melanocyte stimulating hormone (MSH) specifically induces differentiation of mammalian melanocytes. To further define the biochemical events elicited by this stimulus, we have cloned murine melanoma cells which are either highly responsive or nonresponsive to MSH, and have examined their ultrastructural appearance, their melanogenic activities, and also their expression of tyrosinase. We have found that the basal levels of melanogenic activity in pigmented and nonpigmented cells correlate with expression of surface MSH receptors rather than with production of tyrosinase. Nonpigmented cells produce a potent, highly stable inhibitor of melanogenesis; this inhibitor acts directly on tyrosinase to dramatically and abruptly suppress melanin production. This posttranslational control of tyrosinase activity may represent a critical regulatory point in mammalian pigmentation.  相似文献   

15.
Neural crest cells and some of the crest-derived cells of dorsal root ganglia (DRG) of early avian embryos give rise to pigment cells when placed in culture. DRG from older embryos, however, fail to do so under comparable culture conditions. This age-dependent loss of melanogenic ability might be explained either by the death of a subpopulation of latent melanoblasts within early DRG, or the imposition of additional developmental restrictions in multipotent DRG cells. We show here that 12-O-tetradecanoylphorbol-13-acetate (TPA) causes some DRG cells to undergo pigmentation in cultures from older embryos, indicating that the loss of melanogenic ability in older embryos is not due to cell death. These pigment cells also display morphogenetic properties of normal melanocytes, including the ability to invade feather primordia. In addition to DRG, various other neural crest-derivatives contain cells similarly affected by TPA, including cells within sympathetic ganglia and peripheral nerves. We suggest that TPA reverses the developmental restriction of melanogenic ability that is normally imposed on neural crest-derived cells that migrate to various sites in avian embryos where melanogenesis does not normally occur.  相似文献   

16.
Molecular and biochemical mechanisms that switch melanocytes between the production of eumelanin or pheomelanin involve the opposing action of two intercellular signaling molecules, alpha-melanocyte-stimulating hormone (MSH) and agouti signal protein (ASP). In this study, we have characterized the physiological effects of ASP on eumelanogenic melanocytes in culture. Following exposure of black melan-a murine melanocytes to purified recombinant ASP in vitro, pigmentation was markedly inhibited and the production of eumelanosomes was decreased significantly. Melanosomes that were produced became pheomelanosome-like in structure, and chemical analysis showed that eumelanin production was significantly decreased. Melanocytes treated with ASP also exhibited time- and dose-dependent decreases in melanogenic gene expression, including those encoding tyrosinase and tyrosinase-related proteins 1 and 2. Conversely, melanocytes exposed to MSH exhibited an increase in tyrosinase gene expression and function. Simultaneous addition of ASP and MSH at approximately equimolar concentrations produced responses similar to those elicited by the hormone alone. These results demonstrate that eumelanogenic melanocytes can be induced in culture by ASP to exhibit features characteristic of pheomelanogenesis in vivo. Our data are consistent with the hypothesis that the effects of ASP on melanocytes are not mediated solely by inhibition of MSH binding to its receptor, and provide a cell culture model to identify novel factors whose presence is required for pheomelanogenesis.  相似文献   

17.
Excessive exposure to solar ultraviolet radiation is an essential etiological factor for skin cancer. UV radiation, directly or indirectly through the generation of reactive oxygen species (ROS), causes damage to DNA, proteins and lipids, and induces inflammation and immunosuppression. Cutaneous pigmentation afforded by melanocytes is the main photoprotective mechanism in human skin. In response to UV, melanocytes produce melanin pigments and transfer them to adjacent keratinocytes. This review describes: (i) the photoprotective action of melanin; (ii) the regulation of UV-induced melanogenesis and the role of p53 in this process; (iii) the relation between melanogenic and antioxidant activities in melanocytes. The possible involvement of UV-induced ROS in the stimulation of melanin synthesis is also discussed.  相似文献   

18.
Pleiotrophin (PTN) is a secreted heparin‐binding protein that is involved in various biological functions of cell growth and differentiation. Little is known about the effects of PTN on the melanocyte function and skin pigmentation. In this study, we investigated whether PTN would affect melanogenesis. PTN was expressed in melanocytes and fibroblasts of human skin. Transfection studies revealed that PTN decreased melanogenesis, probably through MITF degradation via Erk1/2 activation in melanocytes. The inhibitory action of PTN in pigmentation was further confirmed in ex vivo cultured skin and in the melanocytes cocultured with fibroblasts. These findings suggest that PTN is a crucial factor for the regulation of melanogenesis in the skin.  相似文献   

19.
Because little is known about how the innate immune response influences skin pigmentation, we examined whether Toll‐like receptor (TLR) agonists participate in melanogenesis and melanosome transportation. We observed that TLR2/2 agonist HKLM and TLR3 agonist Poly(I:C) increased the amount of extracellular melanin from primary human epidermal melanocytes. HKLM, but not Poly(I:C), increased the melanogenic genes such as tyrosinase and dopachrome tautomerase. Poly(I:C) increased the expression of Rab27A, a molecule that facilitates melanosome transport to perimembranous actin filament. UVB irradiation induced Rab27A and melanosome transportation in a similar manner of Poly(I:C). SiRNA for TLR3 or Rab27A suppressed the perimembranous accumulation of Gp100‐positive vesicles in melanocytes and decreased melanin transfer to neighboring keratinocytes induced by both Poly(I:C) and UVB. These results suggest that the microenvironment in the epidermis and innate immune stimuli, such as microbiome and ultraviolet represented here by TLR2 and TLR3 agonists, could affect the melanogenesis in human melanocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号