首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stoicheometries and rates of proton translocation associated with respiratory reduction of NO3- have been measured for spheroplasts of Escherichia coli grown anaerobically in the presence of NO3-. Observed stoicheiometries [leads to H+/NO3- ratio; P. Mitchell (1966) Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin] were approx. 4 for L-malate oxidation and approx. 2 for succinate, D-lactate and glycerol oxidation. Measurements of the leads to H+/2e- ratio with formate as the reductant and oxygen or NO3- as the oxidant were complicated by pH changes associated with formate uptake and CO2 formation. Nevertheless, it was possible to conclude that the site of formate oxidation is on the inner aspect of the cytoplasmic membrane, that the leads to H+/O ratio for formate oxidation is approx. 4, and that the leads to H+/NO3- ratio is greater than 2. Measurements of the rate of NO3- penetration into osmotically sensitive spheroplasts demonstrated an electrogenic entry of NO3- anion. The permeability coefficient for nitrate entry at 30 degrees C was between 10(-9) and 10(-10) cm- s(-1). The calculated rate of nitrate entry at the concentration typically used for the assay of nitrate reductase (EC 1.7.99.4) activity was about 0.1% of that required to support the observed rate of nitrate reduction by reduced Benzyl Viologen. Measurements of the distribution of nitrate between the intracellular and extracellular spaces of a haem-less mutant, de-repressed for nitrate reductase but unable to reduce nitrate by the respiratory chain, showed that, irrespective of the presence or the absence of added glucose, nitrate was not concentrated intracellularly. Osmotic-swelling experiments showed that the rate of diffusion of azid anion across the cytoplasmic membrane is relatively low in comparison with the fast diffusion of hydrazoic acid. The inhibitory effect of azide on nitrate reductase was not altered by treatments that modify pH gradients across the cytoplasmic membrane. It is concluded that the nitrate-reducing azide-sensitive site of nitrate reductase is located on the outer aspect of the cytoplasmic membrane. The consequences of this location for mechanisms of proton translocation driven by nitrate reduction are discussed, and lead to the proposal that the nitrate reductase of the cytoplasmic membrane is vectorial, reducing nitrate on the outer aspect of the membrane with 2H+ and 2e- that have crossed from the inner aspect of the membrane.  相似文献   

2.
Respiration of NO resulted in transient proton translocation in anaerobically grown cells of four physiologically diverse denitrifiers. Paracoccus denitrificans, Rhodopseudomonas sphaeroides subsp. denitrificans, "Achromobacter cycloclastes," and Rhizobium japonicum gave, respectively, H+/NO ratios of 3.65, 4.96, 1.94, and 1.12. Antimycin A completely inhibited NO-dependent proton translocation in P. denitrificans and severely restricted translocation in the R. sphaeroides strain. Proton uptake during NO respiration with antimycin A-inhibited cells supplied with an artificial electron source provided evidence for the periplasmic consumption of protons. Values obtained were consistent with the expected ratios of 0.5 mol of H+/mol of NO for reduction of NO to N2O and 1.0 mol of H+/mol of NO for reduction of NO to N2. These data are consistent with the presence of a unique NO reductase found only in anaerobically grown denitrifying cells.  相似文献   

3.
Aerobic and anaerobic bacterial respiration monitored by electrodes.   总被引:6,自引:0,他引:6  
A technique is described by which both oxygen and nitrate (or nitrate or chlorate) levels were continuously monitored during bacterial respiration. Paracoccus (Micrococcus) denitrificans and Escherichia coli oxidizing succinate rapidly ceased to reduce nitrate when oxygen was available, and equally rapidly commenced nitrate reduction when all the oxygen had been consumed. By contrast, membrane vesicles isolated from P. denitrificans reduced oxygen and nitrate simultaneously. The respiratory nitrate reductase in intact cells of P. denitrificans appeared to be inacessible to chlorate present in the reaction medium, and it is suggested that the nitrate reductase is orientated on the plasma membrane so that nitrate gains access from the inner (cytosolic) face.  相似文献   

4.
The uncoupler of mitochondrial oxidative phosphorylation, 2-nitro-4-azido-carbonylcyanide phenylhydrazone (N3CCP) which is capable of photoaffinity labeling has been used to examine the effect of uncouplers on the energy conserving membrane of Paracoccus denitrificans and Tetrahymena pyriformis. The N3CCP uncouples respiration in P. denitrificans and T. pyriformis cells with U1/2 values of 1.05 microM and 0.24 microM, respectively. Binding studies show the presence of 0.65 +/- 0.05 high affinity sites per cytochrome alpha with Kd of 0.5 +/- 0.1 microM in P. denitrificans membranes and 1.4 +/- 0.2 sites per cytochrome alpha 2 with a Kd of 0.4 +/- 0.1 microM in T. pyriformis membranes. Irradiation of [3H]-N3CCP bound to the membranes leads to a covalent linking of the radioactive uncoupler to a peptide of 10--15 kdaltons as analyzed by SDS-polyacrylamide gel electrophoresis. It is concluded that these two microbial systems contain a specific high affinity uncoupler binding site very similar to that of mammalian mitochondria (Katre, N.V. and Wilson, D.F. (1978) Arch. Biochem. Biophys. 191, 647--656).  相似文献   

5.
Paracoccus pantotrophus grown anaerobically under denitrifying conditions expressed similar levels of the periplasmic nitrate reductase (NAP) when cultured in molybdate- or tungstate-containing media. A native PAGE gel stained for nitrate reductase activity revealed that only NapA from molybdate-grown cells displayed readily detectable nitrate reductase activity. Further kinetic analysis showed that the periplasmic fraction from cells grown on molybdate (3 microM) reduced nitrate at a rate of V(max)=3.41+/-0.16 micromol [NO(3)(-)] min(-1) mg(-1) with an affinity for nitrate of K(m)=0.24+/-0.05 mM and was heat-stable up to 50 degrees C. In contrast, the periplasmic fraction obtained from cells cultured in media supplemented with tungstate (100 microM) reduced nitrate at a much slower rate, with much lower affinity (V(max)=0.05+/-0.002 micromol [NO(3)(-)] min(-1) mg(-1) and K(m)=3.91+/-0.45 mM) and was labile during prolonged incubation at >20 degrees C. Nitrate-dependent growth of Escherichia coli strains expressing only nitrate reductase A was inhibited by sub-mM concentrations of tungstate in the medium. In contrast, a strain expressing only NAP was only partially inhibited by 10 mM tungstate. However, none of the above experimental approaches revealed evidence that tungsten could replace molybdenum at the active site of E. coli NapA. The combined data show that tungsten can function at the active site of some, but not all, molybdoenzymes from mesophilic bacteria.  相似文献   

6.
H2-dependent reduction of fumarate and nitrate by spheroplasts from Escherichia coli is coupled to the translocation of protons across the cytoplasmic membrane. The leads to H+/2e- stoicheiometry (g-ions of H+ translocated divided by mol of H2 added) is approx. 2 with fumarate and approx. 4 with nitrate as electron acceptor. This proton translocation is dependent on H2 and a terminal electron acceptor and is not observed in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone and the respiratory inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide. H2-dependent reduction of menadione and ubiquinone-1 is coupled to a protonophore-sensitive, but 2-n-heptyl-4-hydroxy-quinoline N-oxide-insensitive, proton translocation with leads to H+/2e- stoicheiometry of approx. 2. H2-dependent reduction of Benzyl Viologen (BV++) to its radical (BV+) liberates protons at the periplasmic aspect of the cytoplasmic membrane according to the reaction: H2 + 2BV++ leads to 2H+ + 2BV+. It is concluded that the effective proton translocation observed in the H2-oxidizing segment of the anaerobic respiratory chain of Escherichia coli arises as a direct and inevitable consequence of transmembranous electron transfer between protolytic reactions that are spatially separated by a membrane of low proton-permeability.  相似文献   

7.
8.
The bacterial nitric oxide reductase (NOR) is a divergent member of the family of respiratory heme-copper oxidases. It differs from other family members in that it contains an Fe(B)-heme-Fe dinuclear catalytic center rather than a Cu(B)-heme-Fe center and in that it does not pump protons. Several glutamate residues are conserved in NORs but are absent in other heme-copper oxidases. To facilitate mutagenesis-based studies of these residues in Paracoccus denitrificans NOR, we developed two expression systems that enable inactive or poorly active NOR to be expressed, characterized in vivo, and purified. These are (i) a homologous system utilizing the cycA promoter to drive aerobic expression of NOR in P. denitrificans and (ii) a heterologous system which provides the first example of the expression of an integral-membrane cytochrome bc complex in Escherichia coli. Alanine substitutions for three of the conserved glutamate residues (E125, E198, and E202) were introduced into NOR, and the proteins were expressed in P. denitrificans and E. coli. Characterization in intact cells and membranes has demonstrated that two of the glutamates are essential for normal levels of NOR activity: E125, which is predicted to be on the periplasmic surface close to helix IV, and E198, which is predicted to lie in the middle of transmembrane helix VI. The subsequent purification and spectroscopic characterization of these enzymes established that they are stable and have a wild-type cofactor composition. Possible roles for these glutamates in proton uptake and the chemistry of NO reduction at the active site are discussed.  相似文献   

9.
The respiratory nitrate reductase from Paracoccus denitrificans has been purified in the non-ionic detergent Nonidet P-40. The enzyme comprises three polypeptides, alpha, beta and gamma with estimated relative molecular masses of 127 000, 61 000 and 21 000. Duroquinol or reduced-viologen compounds acted as the reducing substrates. The nitrate reductase contained a b-type cytochrome that was reduced by duroquinol and oxidised by nitrate. A preparation of the enzyme that lacked both detectable b-type cytochrome and the gamma subunit was obtained from a trailing peak of nitrate reductase activity collected from a gel filtration column. Absence of the gamma subunit correlated with failure to use duroquinol as reductant; activity with reduced viologens was retained. It is concluded that in the plasma membrane of P. denitrificans the gamma subunit catalyses electron transfer to the alpha and beta subunits of nitrate reductase from ubiquinol which acts as a branch point in the respiratory chain. A new assay was introduced for both nitrate and quinol-nitrate oxidoreductase activity. Diaphorase was used to couple the oxidation of NADH to the production of duroquinol which acted as electron donor to nitrate reductase. Under anaerobic conditions absorbance changes at 340 nm were sensitive to nitrate concentrations in the low micromolar range. This coupled assay was used to determine that the purified enzyme had Km(NO-3) of 13 microM and a Km of 470 microM for ClO-3, an alternative substrate. With viologen substrates Km(NO-3) of 283 microM and Km(ClO-3) of 470 microM were determined; the enzymes possessed a considerably higher Vmax with either NO-3 or ClO-3 than was found when duroquinol was substrate. Azide was a competitive inhibitor of nitrate reduction in either assay system (Ki = 0.55 microM) but 2-n-heptyl-4-hydroxyquinoline N-oxide was effective only with the complete three-subunit enzyme and duroquinol as substrate, consistent with a site of action for this inhibitor on the b-type cytochrome. The low Km for nitrate observed in the duriquinol assay is comparable with the apparent Km(NO-3) recently reported for intact cells of P. denitrificans [Parsonage, D., Greenfield, A. J. & Ferguson, S. J. (1985) Biochim. Biophys. Acta 807, 81-95]. This similarity is discussed in terms of a possible requirement for a nitrate transport system. The nitrate reductase system from P. denitrificans is compared with that from Escherichia coli.  相似文献   

10.
Escherichia coli flavorubredoxin is a member of the family of the A-type flavoproteins, which are built by two core domains: a metallo-beta-lactamase-like domain, at the N-terminal region, harboring a non-heme di-iron site, and a flavodoxin-like domain, containing one FMN moiety. The enzyme from E. coli has an extra module at the C terminus, containing a rubredoxin-like center. The A-type flavoproteins are widespread among strict and facultative anaerobes, as deduced from the analysis of the complete prokaryotic genomes. In this report we showed that the recombinant enzyme purified from E. coli has nitric-oxide reductase activity with a turnover number of approximately 15 mol of NO.mol enzyme(-1).s(-1), which was well within the range of those determined for the canonical heme b(3)-Fe(B) containing nitric-oxide reductases (e.g. approximately 10-50 mol NO.mol enzyme(-1).s(-1) for the Paracoccus denitrificans NOR). Furthermore, it was shown that the activity was due to the A-type flavoprotein core, as the rubredoxin domain alone exhibited no activity. Thus, a novel family of prokaryotic NO reductases, with a non-heme di-iron site as the catalytic center, was established.  相似文献   

11.
The active site of nitric oxide reductase from Paracoccus denitrificans contains heme and non-heme iron and is evolutionarily related to heme-copper oxidases. The CO and NO dynamics in the active site were investigated using ultrafast transient absorption spectroscopy. We find that, upon photodissociation from the active site heme, 20% of the CO rebinds in 170 ps, suggesting that not all the CO transiently binds to the non-heme iron. The remaining 80% does not rebind within 4 ns and likely migrates out of the active site without transient binding to the non-heme iron. Rebinding of NO to ferrous heme takes place in approximately 13 ps. Our results reveal that heme-ligand recombination in this enzyme is considerably faster than in heme-copper oxidases and are consistent with a more confined configuration of the active site.  相似文献   

12.
Following different reports on the stoichiometry and configuration of NO binding to mammalian and bacterial reduced cytochrome c oxidase aa(3) (CcO), we investigated NO binding and dynamics in the active site of beef heart CcO as a function of NO concentration, using ultrafast transient absorption and EPR spectroscopy. We find that in the physiological range only one NO molecule binds to heme a(3), and time-resolved experiments indicate that even transient binding to Cu(B) does not occur. Only at very high (approximately 2 mM) concentrations a second NO is accommodated in the active site, although in a different configuration than previously observed for CcO from Paracoccus denitrificans [E. Pilet, W. Nitschke, F. Rappaport, T. Soulimane, J.-C. Lambry, U. Liebl and M.H. Vos. Biochemistry 43 (2004) 14118-14127], where we proposed that a second NO does bind to Cu(B). In addition, in the bacterial enzyme two NO molecules can bind already at NO concentrations of approximately 1 microM. The unexpected differences highlighted in this study may relate to differences in the physiological relevance of the CcO-NO interactions in both species.  相似文献   

13.
Succinate:quinone reductase catalyzes electron transfer from succinate to quinone in aerobic respiration. Carboxin is a specific inhibitor of this enzyme from several different organisms. We have isolated mutant strains of the bacterium Paracoccus denitrificans that are resistant to carboxin due to mutations in the succinate:quinone reductase. The mutations identify two amino acid residues, His228 in SdhB and Asp89 in SdhD, that most likely constitute part of a carboxin-binding site. This site is in the same region of the enzyme as the proposed active site for ubiquinone reduction. From the combined mutant data and structural information derived from Escherichia coli and Wolinella succinogenes quinol:fumarate reductase, we suggest that carboxin acts by blocking binding of ubiquinone to the active site. The block would be either by direct exclusion of ubiquinone from the active site or by occlusion of a pore that leads to the active site.  相似文献   

14.
15.
The respiratory molybdoenzyme nitrate reductase (NarGHI) from Escherichia coli has been studied by protein film voltammetry, with the enzyme adsorbed on a rotating disk pyrolytic graphite edge (PGE) electrode. Catalytic voltammograms for nitrate reduction show a complex wave consisting of two components that vary with pH, nitrate concentration, and the presence of inhibitors. At micromolar levels of nitrate, the activity reaches a maximum value at approximately -25 mV and then decreases as the potential becomes more negative. As the nitrate concentration is raised, the activity at more negative potentials increases and eventually becomes the dominant feature at millimolar concentrations. This leads to the hypothesis that nitrate binds more tightly to Mo(V) than Mo(IV), so that low levels of nitrate are more effectively reduced at a higher potential despite the lower driving force. However, an alternative interpretation, that nitrate binding is affected by a change in the redox state of the pterin, cannot be ruled out. This proposal, implicating a specific redox transition at the active site, is supported by experiments carried out using the inhibitors azide and thiocyanate. Azide is the stronger inhibitor of the two, and each inhibitor shows two inhibition constants, one at high potential and one at low potential, both of which are fully competitive with nitrate; closer analysis reveals that the inhibitors act preferentially upon the catalytic activity at high potential. The unusual potential dependence therefore derives from the weaker binding of nitrate or the inhibitors to a more reduced state of the active site. The possible manifestation of these characteristics in vivo has interesting implications for the bioenergetics of E. coli.  相似文献   

16.
Methionine sulfoxide reductases B (MsrBs) catalyze the reduction of methionine-R-sulfoxide via a three-step chemical mechanism including a reductase step, formation of an intradisulfide bond followed by a thioredoxin recycling process. Fifty percent of the MsrBs, including the Escherichia coli enzyme, possess a metal binding site composed of two CXXC motifs of unknown function. It is located on the opposite side of the active site. The overexpressed E. coli MsrB tightly binds one atom of zinc/iron. Substitution of the cysteines of E. coli MsrB results in complete loss of bound metal and reductase activity, and leads to a low-structured conformation of the protein as shown by CD, fluorescence, and DSC experiments. Introduction of the two CXXC motifs in Neisseria meningitidis MsrB domain leads to a MsrB that tightly binds one atom of zinc/iron, shows a strongly increased thermal stability and displays a reductase activity similar to that of the wild-type but lacking thioredoxin recycling activity. These results demonstrate the stabilizing effect of the metal and the existence of a preformed metal binding site in the nonbound metal MsrB. The data also indicate that metal binding to N. meningitidis MsrB induces subtle structural modifications, which prevent formation of a competent binary complex between oxidized MsrB and reduced thioredoxin but not between reduced MsrB and substrate. The fact that the E. coli and the N. meningitidis MsrBs exhibit a similar thermal stability suggests the existence of other structural factors in the nonbound metal MsrBs that compensate the metal bound stabilizing effect.  相似文献   

17.
Deamino-NADH/ubiquinone 1 oxidoreductase activity in membrane preparations from Escherichia coli GR19N is 20-50% of NADH/ubiquinone 1 oxidoreductase activity. In comparison, membranes from E. coli IY91, which contain amplified levels of NADH dehydrogenase, exhibit about 100-fold higher NADH/ubiquinone 1 reductase activity but about 20-fold less deamino-NADH/ubiquinone 1 reductase activity. Deamino-NADH/ubiquinone 1 reductase is more sensitive than NADH/ubiquinone 1 reductase activity to inhibition by 3-undecyl-2-hydroxyl-1,4-naphthoquinone, piericidin A, or myxothiazol. Furthermore, GR19N membranes exhibit two apparent Kms for NADH but only one for deamino-NADH. Inside-out membrane vesicles from E. coli GR19N generate a H+ electrochemical gradient (interior positive and acid) during electron transfer from deamino-NADH to ubiquinone 1 that is large and stable relative to that observed with NADH as substrate. Generation of the H+ electrochemical gradient in the presence of deamino-NADH is inhibited by 3-undecyl-2-hydroxy-1,4-naphthoquinone and is not observed in IY91 membrane vesicles or in vesicles from GR19N that are deficient in deamino-NADH/ubiquinone 1 reductase activity. The data provide a strong indication that the E. coli aerobic respiratory chain contains two species of NADH dehydrogenases: (i) an enzyme (NADH dh I) that reacts with deamino-NADH or NADH whose turnover leads to generation of a H+ electrochemical gradient at a site between the primary dehydrogenase and ubiquinone and (ii) an enzyme (NADH dh II) that reacts with NADH exclusively whose turnover does not lead to generation of a H+ electrochemical gradient between the primary dehydrogenase and ubiquinone 1.  相似文献   

18.
19.
The active site of the bacterial nitric oxide reductase from Paracoccus denitrificans contains a dinuclear centre comprising heme b? and non heme iron (Fe(B)). These metal centres are shown to be at isopotential with midpoint reduction potentials of E(m) ≈ +80 mV. The midpoint reduction potentials of the other two metal centres in the enzyme, heme c and heme b, are greater than the dinuclear centre suggesting that they act as an electron receiving/storage module. Reduction of the low-spin heme b causes structural changes at the dinuclear centre which allow access to substrate molecules. In the presence of the substrate analogue, CO, the midpoint reduction potential of heme b? is raised to a region similar to that of heme c and heme b. This leads us to suggest that reduction of the electron transfer hemes leads to an opening of the active site which allows substrate to bind and in turn raises the reduction potential of the active site such that electrons are only delivered to the active site following substrate binding.  相似文献   

20.
Two polytopic membrane proteins, NarK and NarU, are assumed to transport nitrite out of the Escherichia coli cytoplasm, but how nitrate enters enteric bacteria is unknown. We report the construction and use of four isogenic strains that lack nitrate reductase Z and the periplasmic nitrate reductase, but express all combinations of narK and narU. The active site of the only functional nitrate reductase, nitrate reductase A, is located in the cytoplasm, so nitrate reduction by these four strains is totally dependent upon a mechanism for importing nitrate. These strains were exploited to determine the roles of NarK and NarU in both nitrate and nitrite transport. Single mutants that lack either NarK or NarU were competent for nitrate-dependent anaerobic growth on a non-fermentable carbon source, glycerol. They transported and reduced nitrate almost as rapidly as the parental strain. In contrast, the narK-narU double mutant was defective in nitrate-dependent growth unless nitrate transport was facilitated by the nitrate ionophore, reduced benzyl viologen (BV). It was also unable to catalyse nitrate reduction in the presence of physiological electron donors. Synthesis of active nitrate reductase A and the cytoplasmic, NADH-dependent nitrite reductase were unaffected by the narK and narU mutations. The rate of nitrite reduction catalysed by the cytoplasmic, NADH-dependent nitrite reductase by the double mutant was almost as rapid as that of the NarK+-NarU+ strain, indicating that there is a mechanism for nitrite uptake by E. coli that is in-dependent of either NarK or NarU. The nir operon encodes a soluble, cytoplasmic nitrite reductase that catalyses NADH-dependent reduction of nitrite to ammonia. One additional component that contributes to nitrite uptake was shown to be NirC, the hydrophobic product of the third gene of the nir operon, which is predicted to be a polytopic membrane protein with six membrane-spanning helices. Deletion of both NarK and NirC decreased nitrite uptake and reduction to a basal rate that was fully restored by a single chromosomal copy of either narK or nirC. A multicopy plasmid encoding NarU complemented a narK mutation for nitrite excretion, but not for nitrite uptake. We conclude that, in contrast to NirC, which transports only nitrite, NarK and NarU provide alternative mechanisms for both nitrate and nitrite transport. However, NarU might selectively promote nitrite ex-cretion, not nitrite uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号