首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Grasslands dominated by exotic annual grasses have replaced native perennial vegetation types in vast areas of California. Prescribed spring fires can cause a temporary replacement of exotic annual grasses by native and non‐native forbs, but generally do not lead to recovery of native perennials, especially where these have been entirely displaced for many years. Successful reintroduction of perennial species after fire depends on establishment in the postfire environment. We studied the effects of vegetation changes after an April fire on competition for soil moisture, a key factor in exotic annual grass dominance. As an alternative to fire, solarization effectively kills seeds of most plant species but with a high labor investment per area. We compared the burn to solarization in a study of establishment and growth of seeds and transplants of the native perennial grass Purple needlegrass (Nassella pulchra) and coastal sage species California sagebrush (Artemisia californica). After the fire, initial seed bank and seedling densities and regular percent cover and soil moisture (0–20 cm) data were collected in burned and unburned areas. Burned areas had 96% fewer viable seeds of the dominant annual grass, Ripgut brome (Bromus diandrus), leading to replacement by forbs from the seed bank, especially non‐native Black mustard (Brassica nigra). In the early growing season, B. diandrus dominating unburned areas consistently depleted soil moisture to a greater extent between rains than forbs in burned areas. However, B. diandrus senesced early, leaving more moisture available in unburned areas after late‐season rains. Nassella pulchra and A. californica established better on plots treated with fire and/or solarization than on untreated plots. We conclude that both spring burns and solarization can produce conditions where native perennials can establish in annual grasslands. However, the relative contribution of these treatments to restoration appears to depend on the native species being reintroduced, and the long‐term success of these initial restoration experiments remains to be determined.  相似文献   

2.
Many early attempts at tallgrass prairie reconstruction failed to achieve the high species diversity of remnant prairies, and instead consist primarily of C4 grasses. We hypothesized that frequent mowing of established prairie grasses could create sufficient gaps in the aboveground and belowground environment to allow for the establishment of native forbs from seed. We studied forb seedling establishment in a 25‐year‐old prairie planting in northern Iowa that was dominated by native warm‐season grasses. In winter 1999, 23 species of native forbs were broadcast into the recently burned sod at a rate of 350 viable seeds/m2. Treatment plots were mowed weekly for either one or two growing seasons, and control plots were unmowed. Mowed plots had greater light availability than controls, especially when warm‐season grasses began to flower. Overwinter seedling mortality was 3% in mowed treatments compared to 29% in the controls. Forbs in mowed plots had significantly greater root and shoot mass than those in control plots in the first and second growing seasons but were not significantly more abundant. By the fourth growing season, however, forbs were twice as abundant in the mowed treatments. No lasting negative impacts of frequent mowing on the grass population were observed. Mowing a second year influenced species composition but did not change total seedling establishment. Experimental evidence is consistent with the idea that mowing reduced competition for light from large established grasses, allowing forb seedlings the opportunity to reach sufficient size to establish, survive, and flower in the second and subsequent years.  相似文献   

3.
A three season study was conducted to determine the effect of added composted yard waste, arbuscular mycorrhizal (AM) fungi, and fertilizer on plant cover, standing crop biomass, species composition, AM fungal infectivity and spore density in coarse taconite iron ore tailing plots seeded with a mixture of native prairie grasses. Plant cover and biomass, percent seeded species, mycorrhizal infectivity and spore density were greatly increased by additions of composted yard waste. After three seasons, total plant cover was also greater in plots with added fertilizer. Third season plant cover was also greater in plots amended with the higher rate (44.8 Mg ha–1) of compost than the moderate rate (22.4 Mg ha-1). Field inoculation with AM fungi also increased plant cover during the second season and infectivity during the first two seasons. Seeded native species, consisting mostly of the cover species Elymus canadensis, dominated plot vegetation during the second and third seasons. Dispersal of AM fungal propagules into nonmycorrhizal plots occurred rapidly and increased infectivity in compost-amended plots during the third season. In plots with less than 10% plant cover, AM fungal infectivity of inoculated plots was greatly reduced after the second season. The high level of plant cover and the trend of increasing proportion of mycorrhizal-dependent warm-season grasses, along with increases in infectivity, forecast the establishment of a sustainable native grass community that will meet reclamation goals.  相似文献   

4.
Native plant recovery following wildfires is of great concern to managers because of the potential for increased water run‐off and soil erosion associated with severely burned areas. Although postfire seeding with exotic grasses or cultivars of native grasses (seeded grasses) may mitigate the potential for increased run‐off and erosion, such treatments may also be detrimental to long‐term recovery of other native plant species. The degree to which seeded grasses dominate a site and reduce native plant diversity may be a function of the availability of resources such as nitrogen and light and differing abilities of native and seeded grasses to utilize available resources. We tested the hypothesis that seeded grasses have higher growth rates than native grasses when nitrogen and light availability is high in a greenhouse experiment. To determine how differing resource utilization strategies may affect distribution of native and seeded grasses across a burned landscape, we conducted botanical surveys after a wildfire in northern New Mexico, U.S.A., one and four years after the fire. In the greenhouse study we found seeded grasses to produce significantly more biomass than native grasses when nitrogen and light availability was high. Seeded grasses increased in cover from 1–4 years after the fire only in areas where total soil nitrogen was higher. Increased cover of seeded grasses did not affect recovery of native grasses, but it did lead to reduced native species richness at small scales. The potential negative long‐term consequences of seeding with exotic grasses should be considered in postfire rehabilitation treatments.  相似文献   

5.
Ponderosa pine (Pinus ponderosa) forests of the southwestern United States are a mosaic of stands where undisturbed forests are carbon sinks, and stands recovering from wildfires may be sources of carbon to the atmosphere for decades after the fire. However, the relative magnitude of these sinks and sources has never been directly measured in this region, limiting our understanding of the role of fire in regional and US carbon budgets. We used the eddy covariance technique to measure the CO2 exchange of two forest sites, one burned by fire in 1996, and an unburned forest. The fire was a high‐intensity stand‐replacing burn that killed all trees. Ten years after the fire, the burned site was still a source of CO2 to the atmosphere [109±6 (SEM) g C m?2 yr?1], whereas the unburned site was a sink (?164±23 g C m?2 yr?1). The fire reduced total carbon storage and shifted ecosystem carbon allocation from the forest floor and living biomass to necromass. Annual ecosystem respiration was lower at the burned site (480±5 g C m?2 yr?1) than at the unburned site (710±54 g C m?2 yr?1), but the difference in gross primary production was even larger (372±13 g C m?2 yr?1 at the burned site and 858±37 g C m?2 yr?1at the unburned site). Water availability controlled carbon flux in the warm season at both sites, and the burned site was a source of carbon in all months, even during the summer, when wet and warm conditions favored respiration more than photosynthesis. Our study shows that carbon losses following stand‐replacing fires in ponderosa pine forests can persist for decades due to slow recovery of the gross primary production. Because fire exclusion is becoming increasingly difficult in dry western forests, a large US forest carbon sink could shift to a decadal‐scale carbon source.  相似文献   

6.
Controls of nitrogen limitation in tallgrass prairie   总被引:5,自引:0,他引:5  
Summary The relationship between fire frequency and N limitation to foliage production in tallgrass prairie was studied with a series of fire and N addition experiments. Results indicated that fire history affected the magnitude of the vegetation response to fire and to N additions. Sites not burned for over 15 years averaged only a 9% increase in foliage biomass in response to N enrichment. In contrast, foliage production increased an average of 68% in response to N additions on annually burned sites, while infrequently burned sites, burned in the year of the study, averaged a 45% increase. These findings are consistent with reports indicating that reduced plant growth on unburned prairie is due to shading and lower soil temperatures, while foliage production on frequently burned areas is constrained by N availability. Infrequent burning of unfertilized prairie therefore results in a maximum production response in the year of burning relative to either annually burned or long-term unburned sites.Foliage biomass of tallgrass prairie is dominated by C4 grasses; however, forb species exhibited stronger production responses to nitrogen additions than did the grasses. After four years of annual N additions, forb biomass exceeded that of grass biomass on unburned plots, and grasses exhibited a negative response to fertilizer, probably due to competition from the forbs. The dominant C4 grasses may out-compete forbs under frequent fire conditions not only because they are better adapted to direct effects of burning, but because they can grow better under low available N regimes created by frequent fire.  相似文献   

7.
Abstract Multiple disturbance regimes are increasingly common as novel anthropogenic disturbances are added to existing natural disturbances. However, it is generally unknown whether simultaneous or sequential effects of different forms of disturbance are predictable from the independent effects of each disturbance. This study examines the short‐term effects of sequential disturbance by mineral sand‐mining followed by fire in a forest community in south‐eastern Australia. Four combinations of disturbance were sampled: unburned mined, burned mined, unburned forest (unmined) and burned forest (unmined, with between‐fire interval matching the disturbance interval between mining and fire of the burned mined treatment). All combinations were sampled approximately 12 months following fire on the burned sites. The impact of fire after mining depended on disturbance interval. Sites burned 0.5–2.4 years since mining had fewer native vascular plant species than unburned mined sites of the same mined age, whereas sites with 10–16 years or 20–26 years between mining and fire had greater native species richness than unburned mined sites of the same age. Burning 20–26 years after mining brought native species richness within the range of burned forest. For both unmined and mined sites native seedling densities increased with burning, and with longer disturbance intervals. Weed species richness and weed seedling densities were greater on mined sites than in forest, and burning mined sites elevated weed seedling densities further, particularly for short intervals. Both disturbance interval and fire intensity are likely to have contributed to these results, as intensity on mined areas increased with interval, and at 20–26 years post‐mining was equivalent to unmined forest. These results suggest that fire could be used to promote rehabilitation of these mined areas after at least 10 years, but should be excluded from earlier stages of post‐mining regeneration. However, other sources of spatial and temporal variability should be considered in addition to interval and intensity, as variation among mined areas was correlated with post‐fire weather conditions and available weed sources. Finally, the combined effects of mining and fire could not be predicted from knowledge of the disturbances operating separately, indicating that effects of multiple disturbance may be synergistic rather than additive.  相似文献   

8.
The impact that an exotic species can have on the composition of the community it enters is a function of its abundance, its particular species traits and characteristics of the recipient community. In this study we examined species composition in 14 sites burned in fires fuelled by non‐indigenous C4 grasses in Hawaii Volcanoes National Park, Hawaii. We considered fire intensity, time since fire, climatic zone of site, unburned grass cover, unburned native cover and identity of the most abundant exotic grass in the adjacent unburned site as potential predictor variables of the impact of fire upon native species. We found that climatic zone was the single best variable for explaining variation in native cover among burned sites and between burned and unburned pairs. Fire in the eastern coastal lowlands had a very small effect on native plant cover and often stimulated native species regeneration, whereas fire in the seasonal submontane zone consistently caused a decline in native species cover and almost no species were fire tolerant. The dominant shrub, Styphelia tameiameia, in particular was fire intolerant. The number of years since fire, fire intensity and native cover in reference sites were not significantly correlated with native species cover in burned sites. The particular species of grass that carried the fire did however, have a significant effect on native species recovery. Where the African grass Melinis minutiflora was a dominant or codominant species, fire impacts were more severe than where it was absent regardless of climate zone. Overall, the impacts of exotic grass‐fuelled fires on native species composition and cover in seasonally dry Hawaiian ecosystems was context specific. This specificity is best explained by differences between the climatic zones in which fire occurred. Elevation was the main physical variable that differed among the climatic zones and it alone could explain a large percentage of the variation in native cover among sites. Rainfall, by contrast, did not vary systematically with elevation. Elevation is associated with differences in composition of the native species assemblages. In the coastal lowlands, the native grass Heteropogon contortus, was largely responsible for positive changes in native cover after fire although other native species also increased. Like the exotic grasses, this species is a perennial C4 grass. It is lacking in the submontane zone and there are no comparable native species there and almost all native species in the submontane zone were reduced by fire. The lack of fire tolerant species in the submontane zone thus clearly contributes to the devastating impact of fire upon native cover there.  相似文献   

9.
Abstract. Livestock overgrazing and stream incision in the western USA often result in encroachment and dominance of Artemisia tridentata ssp. tridentata (Big sagebrush) in riparian areas that formerly supported meadows. To define the alternative states and thresholds for these ecosystems, we conducted a restoration experiment that included sites with high, intermediate or low water tables. We used a paired‐plot approach in which one plot on each site was burned and seeded with native grasses and forbs typical of naturally occurring dry meadow and Artemisia/Leymus cinereus ecological types, while adjacent unburned plots served as controls. Sites with high and intermediate water tables had greater initial abundances of perennial grasses typical of dry meadows, such as Leymus triticoides and Poa secunda ssp. juncifolia, and these species increased after the burn. In contrast, sites with low water tables were dominated by annual forbs such as Chenopo‐dium album and Descurainia pinnata after the burn. Biomass increased progressively from 1997 to 1999 on burned plots, while controls showed little change. Burning effects were microsite specific, with former Artemisia microsites exhibiting lower biomass than interspaces initially, but similar or higher biomass by the third year. Establishment of seeded species was low and species composition was determined largely by pre‐burn vegetation. Artemisia dominated sites with high water tables appear to represent an alternative state of the dry meadow ecological type, while sites with low water table sites have crossed an abiotic threshold governed by water tables and represent a new ecological type. Burning is an effective tool for restoring relatively high water table sites, but low water table sites will require burning and seeding with species adapted to more xeric conditions.  相似文献   

10.
Introduced grass species have invaded extensive areas of Hawaii Volcanoes National Park and increased the size and frequency of fire. Following fire, grass cover is enhanced while native shrub cover is reduced; the reduction in most shrubs persists for at least 20 years even in the absence of fire. Shrub seedlings were planted in burned and unburned plots with and without grass cover. Biomass of 14 month old shrub seedlings was generally highest in recently burned/grass removed plots, intermediate in old burn/grass removed plots, and lowest in unburned/grass removed plots. In contrast, shrub biomass in plots with grass cover was low and did not differ significantly among burn treatments. Light competition is likely to be responsible for differences in shrub growth rates; grass cover reduced light to 1–10% of background levels. In addition, pool sizes of available soil N were highest in recently burned, intermediate in old burn, and lowest in unburned areas.  相似文献   

11.
Many of the remaining patches of untilled (native) prairie in the Northern Glaciated Plains of North America are heavily invaded by the cool‐season grasses, Bromus inermis and Poa pratensis. However, the native vegetation in these patches contains many warm‐season species. This difference in phenology can be used to benefit restoration. We conducted an experiment to examine the efficacy of restoration treatments (mowing and prescribed fire) applied early in the growing season for consecutive years to decrease cool‐season invasive plant biomass without impacting the native warm‐season species. Our treatments were successful at significantly decreasing invasive cool‐season plant biomass and increasing native warm‐season plant biomass. No differences between treatments (mowing and prescribed fire) were found. Results suggest that incorporating differences in phenology between target and nontarget species into management may increase restoration success.  相似文献   

12.
We sampled litter frogs in an 1800-ha mid-elevation seasonal forest in southeastern Brazil. One hundred 8 * 8-m plots were sampled during the dry/cold season and wet/warm season (unburned areas); we also examined the effects of fire in recently burned areas. A total of 267 frogs (305 g), belonging to 16 species (4 families) were caught. A single species comprised 78.5 percent of the individuals in the dry/cold season and 54.3 percent in the wet/warm season. The density of individuals did not change significantly with season, biomass did. Density and biomass of frogs were positively correlated with altitude. A Mantel test indicated that biological data (species and their abundance) were significantly associated with environmental parameters. The burned areas showed low values in richness, density and biomass of frogs. Harsh seasonal climate and a history of human disturbance may produce the low observed diversity values. The greater densities of frogs in sites of higher elevation may primarily result from mist-generated humidity, which diminishes the harshness of the dry/cold season in relation to lower sites.  相似文献   

13.
Populations of the rare annual forb Amsinckia grandiflora may be declining because of competitive suppression by exotic annual grasses, and may perform better in a matrix of native perennial bunchgrasses. We conducted a field competition experiment in which Amsinckia seedlings were transplanted into forty 0.64‐m2 experimental plots of exotic annual grassland or restored perennial grassland. The perennial grassland plots were restored using mature 3 cm‐diameter plants of the native perennial bunchgrass Poa secunda planted in three densities. The exotic annual grassland plots were established in four densities through manual removal of existing plants. Both grass types reduced soil water potential with increasing biomass, but this reduction was not significantly different between grass types. Both grass types significantly reduced the production of Amsinckia inflorescences. At low and intermediate densities (dry biomass per unit area of 20–80 g/m2), the exotic annual grasses reduced Amsinckia inflorescence number to a greater extent than did Poa, although at high densities (>90 g/m2) both grass types reduced the number of Amsinckia inflorescences to the same extent. The response of Amsinckia inflorescence number to Poa biomass was linear, whereas the same response to the annual grass biomass is logarithmic, and appeared to be related to graminoid cover. This may be because of the different growth forms exhibited by the two grass types. Results of this research suggest that restored native perennial grasslands at intermediate densities have a high habitat value for the potential establishment of the native annual A. grandiflora.  相似文献   

14.
Effects of fire and small-scale soil disturbances on species richness, community heterogeneity, and microsuccession were investigated in a central Oklahoma tallgrass prairie. In the fall of 1985, 0.2 m2 soil disturbances were created on burned and unburned tallgrass prairie. Vegetation on and off disturbances was sampled at monthly intervals over two growing seasons. During the first growing season, the cover of forbs and annuals, and species richness were significantly greater on versus off disturbances, but these differences did not persist through the second year. The variation in species composition among disturbed plots (heterogeneity) was significantly greater compared to undisturbed areas throughout the study. Fire had no consistent effect on richness and heterogeneity of vegetation on soil disturbances but fire reduced heterogeneity on undisturbed vegetation. Rate of succession, based on an increase in cumulative cover of perennial grasses over time, did not differ among treatments during the first growing season. During the second year, rate of succession was significantly greater on burned soil disturbances compared to unburned soil disturbances. These results suggest that while small-scale soil disturbances have primarily short-lived effects on grassland community structure, disturbances do help to maintain spatial and temporal variation in tallgrass prairie communities. Unlike in undisturbed vegetation, however, species richness and heterogeneity on soil disturbances were little effected by fire, but the rate of colonization onto disturbances appeared to be enhanced by fire.  相似文献   

15.
We measured seed germination and seedling survivorship of spotted knapweed, Centaurea stoebe, in a series of laboratory and field experiments to evaluate the efficacy of seed limitation as a management focus. This work was initiated 6 years after introduction of several biological control agents. The soil seed bank of the site used in this study contained a mean density of 5,848 seeds/m2 (ranging from 0 to 16,364 seeds/m2), and 92% of the seeds isolated from soils were shriveled, discolored, and/or partially decayed. Additionally, none of the intact seeds germinated, suggesting that the viable seed bank at our field study site has been exhausted. Centaurea stoebe seeds were planted into pots under a range of soil nitrogen (N) availability, with half of the pots containing a single density of previously established seedlings of a native cool-season grass, slender wheatgrass (Elymus trachycaulus). A watering regime mimicking local precipitation was applied. Spotted knapweed exhibited large biomass responses to N addition, but the presence of grasses suppressed the ability to exploit this N. Surprisingly, low soil N conditions improved knapweed survivorship in the presence of grasses. Nevertheless, recruitment and biomass were still far below the levels reached in the absence of competition. To evaluate the effect of density on successful recruitment, Centaurea stoebe seed was introduced into a meadow at three densities matching reduced levels of seed production under the constraints of seed predators. These densities were sown with or without a seed mixture of native species, into an existing plant community lacking C. stoebe, and seedling recruitment was recorded over 2.5 years. Across all plots and densities sown (568–2,272 seeds m−2 year−1), seedling recruitment was less than 1%. The invasion potential of spotted knapweed was greatly diminished when realistic levels of plant competition and biological control limit seed production. We therefore conclude that a combination of seed limitation and shortage of ‘safe sites’ within undisturbed vegetation can limit densities of C. stoebe.  相似文献   

16.
Abstract. Grass and herb cover, and woody plant densities were measured on 25 native and 25 exotic grassland plots in southeastern Arizona between 1984 and 1990. At least 40 yr previously, the exotic plots had been seeded with two species of lovegrasses (Eragrostis spp.) native to southern Africa. A 1987 wildfire burned 11 native and 11 exotic plots. The fire reduced cover of both native and African grasses for two post-fire growing seasons. Herb cover as a whole increased after the fire for 2 yr, although there were important differences among species. One of two dominant shrubs (Haplopappus tenuisectus) was killed by the fire, while the other (Baccharis pteronioides) was little affected. Mesquite trees (Prosopis juliflora) were killed to the ground by the fire, but 62 of 66 trees had re-sprouted to an average 48% of pre-burn height by 1990. Native and exotic grasses appeared equally tolerant of fire, probably because both evolved in fire-type ecosystems. There was no evidence that fire can be used to permanently restore the diverse native flora to species-poor plantations of the South African exotics.  相似文献   

17.
The fire regime of ponderosa pine forests in the southwestern United States has shifted over the past century from historically frequent, low-intensity surface fires to infrequent, stand-replacing crown fires. We quantified plant and soil carbon (C) responses to this new fire regime and assessed interactions between changes in fire regime and changes in precipitation regime predicted by some climate models (specifically, an earlier monsoon rain season). We hypothesized that soil C pools and carbon dioxide (CO2) efflux rates would decrease initially following stand-replacing fires (due to low plant C inputs and the loss of the soil surficial organic (O) horizon), but then increase with time-after-fire (as plant C inputs increase). Water availability often limits soil biological activity in these forests, but we predicted that low soil C availability following fire would constrain soil CO2 efflux responses to precipitation. In a series of sites with histories of stand-replacing fires that burned between 2 and 34?years prior to sampling, burned patches had lower soil C pools and fluxes than adjacent unburned patches, but there was no evidence of a trend with time-after-fire. Burned forests had 7,500?g C m?2 less live plant biomass C (P?<?0.001), 1,600?g C m?2 less soil total C (P?<?0.001) and 90?g C m?2 less soil labile C (P?<?0.001) than unburned forests. Lower soil labile C in burned patches was due to both a loss of O horizon mass with fire and lower labile C concentrations (g labile C kg?1 soil total C) in the mineral soil. During the annual drought that precedes summer monsoon rains, both burned and unburned patches had soil CO2 efflux rates ranging from 0.9 to 1.1?g CO2-C m?2 day?1. During the monsoon season, soil CO2 efflux in unburned patches increased to approximately 4.8?g CO2-C m?2 day?1 and rates in paired burned patches (3.4?g CO2-C m?2 day?1) were lower (P?<?0.001). We also used field irrigation to experimentally create an earlier and longer monsoon season, and soil CO2 efflux rates at both burned and unburned plots increased initially in response to watering, but decreased to below control (plots without irrigation) rates within weeks. Watering did not significantly change cumulative growing season soil CO2 efflux, supporting our prediction that C availability constrains soil CO2 efflux responses to precipitation. This research advances our understanding of interactions among climate, fire, and C in southwestern forests, suggesting that climate-induced shifts toward more stand-replacing fires will decrease soil C for decades, such that a single fire can constrain future soil biological responses to precipitation regime changes.  相似文献   

18.
Measurements of mid-season live and dead aboveground biomass are reported for a 10-yr period (1975–84) in a northeast Kansas tallgrass prairie. Study sites included shallow, rocky upland and deep, non-rocky lowland soils in annually burned (April) and unburned watersheds. Lowland sites had significantly greater live biomass than upland sites for both burned and unburned prairie for the 10-yr period. Moreover, live biomass was greater on burned than unburned lowland sites, but was not significantly increased by fire on the upland sites. Averaged across upland and lowland sites, mid-season live biomass was 422 g m–2 on annually burned and 364 g m–2 on unburned sites for the 10-yr period. Each site had its lowest live biomass value during the severe drought year of 1980 (range = 185–299 g m–2). During the study period, live biomass was most strongly correlated with seasonal pan water evaporation (r = –0.45 to –0.82), whereas dead biomass was correlated with the previous yr's precipitation (r = 0.61 and 0.90 for upland and lowland sites, respectively). When aboveground biomass was sampled throughout the 1984 season and separated into several components, biomass of the graminoids was 40% lower, whereas that of forbs and woody plants was 200–300% greater in the unburned than in the annually burned site.  相似文献   

19.
Woodland restoration sites planted with Quercus lobata (valley oak) often have serious invasions of nonnative annual grasses and thistles. Although prescribed fire can effectively control these exotics, restoration managers may be reluctant to use fire if it causes substantial mortality of recently planted saplings. We studied the effects of prescribed fires on the survival and subsequent growth of 5‐ and 6‐year‐old valley oak saplings at a research field near Davis, California. One set of blocks was burned in summer 2003 at a time that would control yellow star thistle, a second set of blocks was burned in spring 2004 at a time that would control annual grasses, and a third set was left unburned. Very few oaks died as a result of either fire (3–4%). Although a large proportion was top‐killed (66–72%), virtually all these were coppiced and most saplings over 300 cm tall escaped top‐kill. Tree height, fire temperature, and understory biomass were all predictive of the severity of sapling response to fire. Although the mean sapling height was initially reduced by the fires, the growth rates of burned saplings significantly exceeded the growth rates of unburned control trees for 2 years following the fires. By 2–3 years after the fires, the mean height of spring‐ and summer‐burned saplings was similar to that of the unburned control saplings. The presence of valley oak saplings does not appear to preclude the use of a single prescribed burn to control understory invasives, particularly if saplings are over 300 cm tall.  相似文献   

20.
Pocket gopher (Geomyidae) disturbances are created in spatiallypredictable patterns. This may influence resource heterogeneity and affectgrassland vegetation in a unique manner. We attempt to determine the extent towhich density and spatial pattern of soil disturbances influence tallgrassprairie plant community structure and determine how these disturbances interactwith fire. To investigate the effects of explicit disturbance patterns we createdsimulated pocket gopher burrows and mounds in various spatial patterns.Simulated burrows were drilled into the soil at different densities inreplicated plots of burned and unburned prairie. Separate plots of simulatedmounds were created in burned and unburned prairie at low, medium, or high mounddensities in clumped, uniform, or random spatial dispersions. In both burned and unburned plots, increased burrow density decreasedgraminoid biomass and increased forb biomass. Total-plant and graminoid biomasswere higher in burned than unburned plots while forb biomass was higher inunburned plots. Total-plant species richness was not significantly affected byburrow density or burning treatments, but graminoid species richness increasedin unburned plots and forb species richness increased in burned plots. Plant species richness was temporarily reduced directly on mounddisturbances compared to undisturbed prairie. Over time and at larger samplingscales, the interaction of fire and mound disturbance patterns significantlyaffected total-plant and graminoid species richness. The principal effect inburned and unburned prairie was decreased total-plant and graminoid speciesrichness with increased mound disturbance intensity. Although species richness at small patch scales was not increased by anyintensity of disturbance and species composition was not altered by theestablishment of a unique guild of disturbance colonizing plants, our studyrevealed that interactions between soil disturbances and fire alter the plantcommunity dominance structure of North American tallgrass prairie primarily viachanges to graminoids. Moreover, these effects become increasingly pronouncedover time and at larger spatial sampling scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号