共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Determinants of membrane-targeting and transmembrane translocation during bacterial protein export. 总被引:5,自引:0,他引:5 下载免费PDF全文
We have separately analyzed membrane-targeting and membrane translocation of an exported bacterial protein. The precursor of the outer membrane protein LamB of Escherichia coli was synthesized in vitro and translocated into inverted plasma membrane vesicles under co- and post-translational conditions. The translation/translocation products of LamB were subsequently resolved into soluble and membrane-associated material. Dissipation of the H(+)-motive force, depletion of ATP and treatment of membranes with N-ethylmaleimide each inhibited processing and translocation of preLamB without preventing its binding to the membranes. Hence, all three conditions block transmembrane passage rather than membrane-targeting. The latter was abolished by pretreatment of salt-extracted membrane vesicles with trypsin. It was also drastically reduced when preLamB was synthesized in cell extracts derived from either a secA amber or a secB null mutant. Membrane-targeting of preLamB therefore requires soluble SecA and SecB as well as a protease-sensitive membrane receptor. The finding that SecA is involved in targeting whereas ATP is required for the transmembrane passage suggests that SecA, which harbors an ATPase activity [Lill et al. (1989), EMBO J., 8, 961-966], might have a dual function in bacterial protein export. 相似文献
4.
Signal sequence non-optimal codons have been shown to be important for the folding and efficient export of maltose binding protein (MBP), a SecB dependent protein. In this study, we analysed the importance of signal sequence non-optimal codons of TolB, a signal recognition particle (SRP) dependent exported protein. The protein production levels of wild type TolB (TolB-wt) and a mutant allele of TolB in which all signal sequence non-optimal codons were changed to a synonymous optimal codon (TolB-opt), revealed that TolB-opt production was 12-fold lower than TolB-wt. This difference could not be explained by changes in mRNA levels, or plasmid copy number, which was the same in both strains. A directed evolution genetic screen was used to select for mutants in the TolB-opt signal sequence that resulted in higher levels of TolB production. Analysis of the 46 independent TolB mutants that reverted to wild type levels of expression revealed that at least four signal sequence non-optimal codons were required. These results suggest that non-optimal codons may be required for the folding and efficient export of all proteins exported via the Sec system, regardless of whether they are dependent on SecB or SRP for delivery to the inner membrane. 相似文献
5.
Regions of maltose-binding protein that influence SecB-dependent and SecA-dependent export in Escherichia coli. 总被引:1,自引:0,他引:1 下载免费PDF全文
In Escherichia coli, the efficient export of maltose-binding protein (MBP) is dependent on the chaperone SecB, whereas export of ribose-binding protein (RBP) is SecB independent. To localize the regions of MBP involved in interaction with SecB, hybrids between MBP and RBP in SecB mutant cells were constructed and analyzed. One hybrid consisted of the signal peptide and first third of the mature moiety of MBP, followed by the C-terminal two-thirds of RBP (MBP-RBP112). This hybrid was dependent upon SecB for its efficient export and exhibited a strong export defect in secA mutant cells. A hybrid between RBP and MBP with the same fusion point was also constructed (RBP-MBP116). The RBP-MBP116 hybrid remained SecB independent and only exhibited a partial export defect in secA mutant cells. In addition, MBP species with specific alterations in the early mature region were less dependent on SecB for their efficient export. The export of these altered MBP species was also less affected in secA mutant cells and in cells treated with sodium azide. These results present additional evidence for the targeting role of SecB. 相似文献
6.
The signal recognition particle (SRP) is a key component of the cellular machinery that couples the ongoing synthesis of proteins to their proper localization, and has often served as a paradigm for understanding the molecular basis of protein localization within the cell. The SRP pathway exemplifies several key molecular events required for protein targeting to cellular membranes: the specific recognition of signal sequences on cargo proteins, the efficient delivery of cargo to the target membrane, the productive unloading of cargo to the translocation machinery and the precise spatial and temporal coordination of these molecular events. Here we highlight recent advances in our understanding of the molecular mechanisms underlying this pathway, and discuss new questions raised by these findings. 相似文献
7.
Periplasmic or membrane-bound bacterial hydrogenases are generally composed of a small subunit and a large subunit. The small subunit contains a peculiar N-terminal twin-arginine signal peptide, whereas the large subunit lacks any known targeting signal for export. Genetic and biochemistry data support the assumption that the large subunit is cotranslocated with the small subunit across the cytoplasmic membrane. Indeed, the signal peptide carried by the small subunit directs both the small and the large subunits to the recently identified Mtt/Tat pathway, independently of the Sec machinery. In addition, the twin-arginine signal peptide of hydrogenase is capable of directing protein import into the thylakoidal lumen of chloroplasts via the homologous deltapH-driven pathway, which is independent of the Sec machinery. Therefore, the translocation of hydrogenase shares characteristics with the deltapH-driven import pathway in terms of Sec-independence and requirement for the twin-arginine signal peptide, and with protein import into peroxisomes in a "piggyback" fashion. 相似文献
8.
The ATPase SecA drives the post-translational translocation of proteins through the SecY channel in the bacterial inner membrane. SecA is a dimer that can dissociate into monomers under certain conditions. To address the functional importance of the monomeric state, we generated an Escherichia coli SecA mutant that is almost completely monomeric (>99%), consistent with predictions from the crystal structure of Bacillus subtilis SecA. In vitro, the monomeric derivative retained significant activity in various assays, and in vivo, it sustained 85% of the growth rate of wild type cells and reduced the accumulation of precursor proteins in the cytoplasm. Disulfide cross-linking in intact cells showed that mutant SecA is monomeric and that even its parental dimeric form is dissociated. Our results suggest that SecA functions as a monomer during protein translocation in vivo. 相似文献
9.
Topology inversion of SecG is essential for cytosolic SecA-dependent stimulation of protein translocation 总被引:1,自引:0,他引:1
Sugai R Takemae K Tokuda H Nishiyama K 《The Journal of biological chemistry》2007,282(40):29540-29548
SecG, a subunit of the protein translocon, undergoes a cycle of topology inversion. To further examine the role of this topology inversion, we analyzed the activity of membrane vesicles carrying a SecG-PhoA fusion protein (SecG-PhoA inverted membrane vesicles (IMVs)). In the absence of externally added SecA, SecG-PhoA IMVs were as active in protein translocation as SecG(+) IMVs per SecA. Consistent with this observation, insertion of membrane-bound SecA into SecG-PhoA IMVs was normally observed. On the other hand, externally added SecA did not affect the activity of SecG-PhoA IMVs, but it caused >10-fold stimulation of the translocation activity of SecG(+) IMVs, indicating that the topology inversion of SecG, which cannot occur in SecG-PhoA IMVs, is essential for cytosolic SecA-dependent stimulation of protein translocation. SecG-PhoA IMVs generated a 46-kDa fragment of SecA upon trypsin treatment. The accumulation of this membrane-inserted SecA in the SecG-PhoA IMVs was responsible for the loss of the soluble SecA-dependent stimulation. Moreover, fixation of the inverted SecG topology was found to be dependent on soluble SecA. The dual functions of SecG in protein translocation will be discussed. 相似文献
10.
Polypeptide-binding proteins mediate completion of co-translational protein translocation into the mammalian endoplasmic reticulum 总被引:2,自引:0,他引:2 下载免费PDF全文
The first step in the secretion of most mammalian proteins is their transport into the lumen of the endoplasmic reticulum (ER). Transport of pre-secretory proteins into the mammalian ER requires signal peptides in the precursor proteins and a protein translocase in the ER membrane. In addition, hitherto unidentified lumenal ER proteins have been shown to be required for vectorial protein translocation. This requirement was confirmed in this study by using proteoliposomes that were made from microsomal detergent extracts and contained either low or high concentrations of lumenal ER proteins. Furthermore, immunoglobulin-heavy-chain-binding protein (BiP) was shown to be able to substitute for the full set of lumenal proteins and, in the case of biotinylated precursor proteins, avidin was found to be able to substitute for lumenal proteins. Thus, the polypeptide-chain-binding protein BiP was identified as one lumenal protein that is involved in efficient vectorial protein translocation into the mammalian ER. 相似文献
11.
The periplasmic entrance of the TolC channel tunnel is sealed by close-packing of inner and outer coiled-coils, and it has been proposed that opening of the entrance is achieved by an iris-like realignment of the inner coiled-coils. This is supported by experimental disruption of the key links connecting them, which effects transition to the open state in TolC inserted into planar lipid bilayers. Here we provide in vivo evidence for this "twist to open" mechanism by constraining the coiled coils with disulphide bonds, either self-locking or bridged by a chemical cross-linker, and reconstituting the resulting TolC variants into the type I protein export system in Escherichia coli. Introducing an intermonomer disulphide bridge between Ala159 and Ser350 caused a fivefold reduction in export, and when the coiled coils were cross-linked at the entrance constriction, between Asp374 of adjacent monomers or between Asn156 and Ala375, TolC-dependent export was abolished. In vivo cross-linking showed that the locked non-exporting TolC variants were still recruited to assemble the type I export apparatus. The data show that untwisting the entrance helices is essential for the export function of TolC in E.coli, specifically to allow access and passage of substrates engaged at the inner membrane translocase. 相似文献
12.
13.
Zhang Y Berndt U Gölz H Tais A Oellerer S Wölfle T Fitzke E Rospert S 《Molecular biology of the cell》2012,23(16):3027-3040
Nascent polypeptide-associated complex (NAC) was initially found to bind to any segment of the nascent chain except signal sequences. In this way, NAC is believed to prevent mistargeting due to binding of signal recognition particle (SRP) to signalless ribosome nascent chain complexes (RNCs). Here we revisit the interplay between NAC and SRP. NAC does not affect SRP function with respect to signalless RNCs; however, NAC does affect SRP function with respect to RNCs targeted to the endoplasmic reticulum (ER). First, early recruitment of SRP to RNCs containing a signal sequence within the ribosomal tunnel is NAC dependent. Second, NAC is able to directly and tightly bind to nascent signal sequences. Third, SRP initially displaces NAC from RNCs; however, when the signal sequence emerges further, trimeric NAC·RNC·SRP complexes form. Fourth, upon docking to the ER membrane NAC remains bound to RNCs, allowing NAC to shield cytosolically exposed nascent chain domains not only before but also during cotranslational translocation. The combined data indicate a functional interplay between NAC and SRP on ER-targeted RNCs, which is based on the ability of the two complexes to bind simultaneously to distinct segments of a single nascent chain. 相似文献
14.
The bacterial flagellum is a supramolecular structure consisting of a basal body, a hook and a filament. Most of the flagellar components are translocated across the cytoplasmic membrane by the flagellar type III protein export apparatus in the vicinity of the flagellar base, diffuse down the narrow channel through the nascent structure and self-assemble at its distal end with the help of a cap structure. Flagellar proteins synthesized in the cytoplasm are targeted to the export apparatus with the help of flagellum-specific chaperones and pushed into the channel by an ATPase, whose activity is controlled by its regulator to enable the energy of ATP hydrolysis to be efficiently coupled to the translocation reaction. The export apparatus switches its substrate specificity by monitoring the state of flagellar assembly in the cell exterior, allowing this huge and complex macromolecular assembly to be built efficiently by a highly ordered and well-regulated assembly process. 相似文献
15.
16.
17.
In Gram-negative bacteria, two distinct targeting routes assist in the proper localization of secreted and membrane proteins. Signal recognition particle (SRP) mainly targets ribosome-bound nascent membrane proteins, whereas SecB facilitates the targeting of periplasmic and outer membrane proteins. These routes converge at the translocase, a protein-conducting pore in the membrane that consists of the SecYEG complex associated with the peripheral ATPase, SecA. Recent structural studies of the targeting and the translocating components provide insights into how substrates are recognized and suggest a mechanism by which proteins are transported through an aqueous pore in the cytoplasmic membrane. 相似文献
18.
SecB is a bacterial molecular chaperone involved in mediating translocation of newly synthesized polypeptides across the cytoplasmic membrane of bacteria. The crystal structure of SecB from Haemophilus influenzae shows that the molecule is a tetramer organized as a dimer of dimers. Two long channels run along the side of the molecule. These are bounded by flexible loops and lined with conserved hydrophobic amino acids, which define a suitable environment for binding non-native polypeptides. The structure also reveals an acidic region on the top surface of the molecule, several residues of which have been implicated in binding to SecA, its downstream target. 相似文献
19.
The Tom70 import receptor on the mitochondrial outer membrane specifically recognizes Hsp90 and Hsc70, a critical step for the import of mitochondrial preproteins, the targeting of which depends on these cytosolic chaperones. To analyze the role of Hsp90 in mitochondrial import, the effects of the Hsp90 inhibitors geldanamycin and novobiocin were compared. Geldanamycin occludes the N-terminal ATP-binding site of Hsp90, whereas novobiocin targets the C-terminal region of the chaperone. Here, novobiocin was found to inhibit preprotein import and, in particular, targeting to the purified cytosolic fragment of Tom70. Hsp90 cross-linking to preprotein and coprecipitation of Hsp90 with Tom70 were both impaired by novobiocin. Overall, novobiocin treatment increased preprotein aggregation, contributing to reduced import competence. In contrast, geldanamycin had no apparent effect on preprotein interactions with Hsp90, formation of preprotein-chaperone complexes, Hsp90 docking onto Tom70, or preprotein association with the outer membrane. Instead, geldanamycin impaired formation of preprotein import intermediates at the outer membrane. This suggests a novel active role for Hsp90 in import steps subsequent to Tom70 targeting. Our results outline the mechanisms of Hsp90 function in preprotein targeting and transport. 相似文献
20.
Bacterial surface layer (S-layer) proteins self-assemble into large two-dimensional crystalline lattices that form the outermost cell-wall component of all archaea and many eubacteria. Despite being a large class of self-assembling proteins, little is known about their molecular architecture. We investigated the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2 to identify residues located at the subunit-subunit interface and to determine the S-layer's topology. Twenty-three single cysteine mutants, which were previously mapped to the surface of the SbsB monomer, were subjected to a cross-linking screen using the photoactivatable, sulfhydryl-reactive reagent N-[4-(p-azidosalicylamido)butyl]-3′-(2′-pyridyldithio)propionamide. Gel electrophoretic analysis on the formation of cross-linked dimers indicated that 8 out of the 23 residues were located at the interface. In combination with surface accessibility data for the assembled protein, 10 residues were assigned to positions at the inner, cell-wall-facing lattice surface, while 5 residues were mapped to the outer, ambient-exposed lattice surface. In addition, the cross-linking screen identified six positions of intramolecular cross-linking within the assembled protein but not in the monomeric S-layer protein. Most likely, these intramolecular cross-links result from conformational changes upon self-assembly. The results are an important step toward the further structural elucidation of the S-layer protein via, for example, X-ray crystallography and cryo-electron microscopy. Our approach of identifying the surface location of residues is relevant to other planar supramolecular protein assemblies. 相似文献