首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pear psylla, Cacopsylla pyricola (Foerster) (Hemiptera: Psyllidae), is a key pest of cultivated pear [Pyrus communis L. (Rosaceae)] in North America and Europe. We examined the effects of foliar applications of three commercially available chemical elicitors of host‐plant defenses — Actigard (acibenzolar‐S‐methyl), Employ (harpin protein), and ODC (chitosan) — on survival, development, feeding, and egg laying of C. pyricola. All three defense elicitors reduced the number of nymphs present on pear (cvs. Bartlett or D'Anjou) 30 days after releasing 10 adults on the trees. Choice assays showed that females settled and oviposited on untreated trees more often than on trees treated with any of the three defense elicitors. Results of no‐choice assays confirmed that the effects of Actigard, Employ, and ODC on C. pyricola were due to activation of systemic plant responses that led to reduced oviposition preference and nymph survival. However, results did not provide evidence that plant responses to elicitors led to reduced nymphal feeding rates or development. Results of our laboratory studies suggest that commercial defense elicitors may be useful in the integrated management of pear psylla once the effects of elicitors at an ecological scale are better understood.  相似文献   

2.
The rapid and effective activation of disease resistance responses is essential for plant defense against pathogen attack. These responses are initiated when pathogen-derived molecules (elicitors) are recognized by the host. In order to create novel mechanisms for fire blight resistance in pear, we have generated transgenic pears expressing the elicitor harpin Nea from Erwinia amylovora under the control of the constitutive promoter CaMV35S. The transient expression of hrpN Ea in pear cells did not provoke any apparent damage. Therefore, stable constitutive expression of hrpN Ea was studied in seventeen transgenic clones of the very susceptible cultivar “Passe Crassane.” Most transgenic clones displayed significant reduction of susceptibility to fire blight in vitro when inoculated by E. amylovora, which was positively correlated to their degree of expression of the transgene hrpN Ea . These results indicate that ectopic expression of a bacterial elicitor such as harpin Nea is a promising way to improve pear resistance to fire blight.  相似文献   

3.
Improvement of the host resistance by using hazard free chemical elicitors is emerging as an alternative approach in the field of plant disease management. In our present work, we have screened the efficacy and possible mechanism of abiogenic elicitors like Dipotassium hydrogen orthophosphate (K2HPO4), Oxalic acid (OA), Isonicotinic acid (INA), Salicylic acid (SA), Acetylsalicylate (AS), Arachidonic acid (AA) and Calcium chloride (CaCl2) to stimulate innate immune responses in Lycopersicum esculentum Mill. Excised tomato leaves, treated with elicitors at three different concentrations, were found to stimulate defense and antioxidative enzymes, total phenol and flavonoid content after 24 h of incubation. CaCl2 (0.5 %) followed by INA (2.5 mM) were found most effective in activation of all such defense molecules in tomato leaves. Furthermore, nitric oxide (NO), a key gaseous mediator in plant defense signaling, was also measured after subsequent elicitor application. Higher doses of elicitors showed an elevated level of reactive oxygen species (ROS) generation, enhanced lipid peroxidation rate and proline content, which indicates the extent of abiotic stress generation on the leaves. However, ROS production, lipid peroxidation rate and proline concentration remain significantly reduced as a result of CaCl2 (0.5 %) and INA (2.5 mM) application. A sharp increase of total chlorophyll content was also recorded due to treatment of CaCl2 (0.5 %). These results demonstrate the effects of different abiogenic elicitors to regulate the production of defense molecules. Results also suggest that among all such chemicals, CaCl2 (0.5 %) and INA (2.5 mM) can be used as a potential elicitor in organic farming of tomato.  相似文献   

4.
5.
6.
7.
In plants, the level of ethylene is determined by the activity of the key enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS). A gene encoding an ACC synthase protein was isolated from pear (Pyrus pyrifolia). This gene designated PpACS1a (GenBank accession no. KC632526) was 1488 bp in length with an open reading frame (ORF) encoding a protein of 495 amino acids that shared high similarity with other pear ACC synthase proteins. The PpACS1a was grouped into type-1 subfamily of plant ACS based on its conserved domain and phylogenetic status. Real-time quantitative PCR indicated that PpACS1a was differentially expressed in pear tissues and predominantly expressed in anthers. The expression signal of PpACS1a was also detected in fruit and leaves, but no signal was detected in shoots and petals. Furthermore, the PpACS1a expression was regulated during fruit ripening. In addition, the PpACS1a gene expression was regulated by salicylic acid (SA) and indole-3-acetic acid (IAA) in fruit. Moreover, the expression of the PpACS1a was up-regulated in diseased pear fruit. These results indicated that PpACS1a might be involved in fruit ripening and response to SA, IAA and disease.  相似文献   

8.
Lingfei Xu  Yanmin Du 《BioControl》2012,57(3):451-461
The yeast antagonist Candida guilliermondii and ultraviolet-C (UV-C) treatment were investigated for controlling infection following artificial inoculation with Penicillium expansum or Botrytis cinerea, or natural infection in pear fruit stored at 20°C. Applied separately, both C. guilliermondii and UV-C (5 kJ m−2) effectively inhibited decay caused by P. expansum or B. cinerea, and natural infection. The combination of C. guilliermondii and UV-C showed better control efficacy. Application of UV-C did not affect the growth of C. guilliermondii in pear fruit wounds, while UV-C induced a significant increase in the activities of chitinase, β-1,3-glucanase, catalase and peroxidase in pear fruit. The mechanism by which UV-C enhanced the biocontrol efficacy of C. guilliermondii may be related to the elicitation of defense responses in pear fruit. The combination of C. guilliermondii and UV-C radiation could be a promising method for the control of P. expansum and B. cinerea in pear fruit.  相似文献   

9.
The effects of chemical and microbial elicitors such as β-aminobutyric acid (BABA), Salicylic acid (SA), and Pseudomonas fluorecens CHAO on hydrogen peroxide generation and activity of the enzymes related to its metabolism, i.e., superoxide dismutase (SOD), guaiacol peroxidase (GPOX), and catalase (CAT) were investigated in tomato roots infected with root-knot nematode (Meloidogyne javanica). Results of this study show that treating the tomato seedlings with the above elicitors significantly reduces the nematode infection level. Among the tested elicitors, BABA has reduced the nematode galls, number of egg masses per plant and number of eggs per individual egg mass more than the others. Additionally, the amount of H2O2, a product of oxidative stress, SOD and GPOX specific activities were significantly increased in the elicitor treated plants in comparison to control. Our observation shows that BABA also increases the H2O2 accumulation and the SOD and GPOX activities more as compared with the other tested elicitors. Such increases have occurred in two phases and maximum levels of them were observed at 5 days after treatment. In contrast with the increase in SOD and GPOX activities, the CAT activity doesnot show any significant increase in treated plants as compared with the control and other tested elicitors. It can be concluded that BABA, SA, and Pseudomonas fluorescens CHAO induce oxidative stress in tomato roots through generation of reactive oxygen species (ROS) and the enzymes related to their metabolism.  相似文献   

10.
A gene encoding an ethylene receptor protein was isolated from pear (Pyrus pyrifolia). This gene, designated PpERS (GenBank accession No. KC517482), was 1,918 bp in length with an open reading frame encoding a protein of 638 amino acids that shared high similarity with another pear ethylene receptor protein PpERS1, and two apple ethylene receptor proteins MdERS and MdERS1. The PpERS was grouped into the ETR1 subfamily of ethylene receptor based on its conserved domain and phylogenetic status. The PpERS gene contained five exons interrupted by four introns. Quantitative RT-PCR indicated that PpERS was differentially expressed in pear tissues and predominantly expressed in petals, shoots, anthers, and 160 days after full bloom fruit. The PpERS expression was regulated during fruit development. In addition, the PpERS gene expression was regulated by salicylic acid (SA) and ethylene in fruit. The results indicated that PpERS might participate in ethylene and SA signaling transduction during pear fruit development.  相似文献   

11.
The Myriad Plant Responses to Herbivores   总被引:48,自引:0,他引:48  
Abstract Plant responses to herbivores are complex. Genes activated on herbivore attack are strongly correlated with the mode of herbivore feeding and the degree of tissue damage at the feeding site. Phloem-feeding whiteflies and aphids that produce little injury to plant foliage are perceived as pathogens and activate the salicylic acid (SA)-dependent and jasmonic acid (JA)/ethylene-dependent signaling pathways. Differential expression of plant genes in response to closely related insect species suggest that some elicitors generated by phloem-feeding insects are species-specific and are dependent on the herbivore's developmental stage. Other elicitors for defense-gene activation are likely to be more ubiquitous. Analogies to the pathogen-incompatible reactions are found. Chewing insects such as caterpillars and beetles and cell-content feeders such as mites and thrips cause more extensive tissue damage and activate wound-signaling pathways. Herbivore feeding is not equivalent to mechanical wounding. Wound responses are a part of the induced responses that accompany herbivore feeding. Herbivores induce direct defenses that interfere with herbivore feeding, growth and development, fecundity, and fertility. In addition, herbivores induce an array of volatiles that creates an indirect mechanism of defense. Volatile blends provide specific cues to attract herbivore parasites and predators to infested plants. The nature of the elicitors for volatile production is discussed.  相似文献   

12.
Arabidopsis thaliana calmodulin binding protein 60g (CBP60g) contributes to production of salicylic acid (SA) in response to recognition of microbe‐associated molecular patterns (MAMPs) such as flg22, a fragment of bacterial flagellin. Calmodulin binding is required for the function of CBP60g in limiting growth of the bacterial pathogen Pseudomonas syringae pv. maculicola (Pma) ES4326 and activation of SA synthesis. Here, we describe a closely related protein, SARD1. Unlike CBP60g, SARD1 does not bind calmodulin. Growth of Pma ES4326 is enhanced in sard1 mutants. In cbp60g sard1 double mutants, growth of Pma ES4326 is greatly enhanced, and SA levels and expression of PR‐1 and SID2 are dramatically reduced. Expression profiling placed the CBP60g/SARD1 node between the PAD4/EDS1 and SA nodes in the defense signaling network, and indicated that CBP60g and SARD1 affect defense responses in addition to SA production. A DNA motif bound by CBP60g and SARD1, GAAATTT, was significantly over‐represented in promoters of CBP60g/SARD1‐dependent genes, suggesting that expression of these genes is modulated by CBP60g/SARD1 binding. Gene expression patterns showed a stronger effect of cbp60g mutations soon after activation of a defense response, and a stronger effect of sard1 mutations at later times. The results are consistent with a model in which CBP60g and SARD1 comprise a partially redundant protein pair that is required for activation of SA production as well as other defense responses, with CBP60g playing a more important role early during the defense response, and SARD1 to playing a more important role later.  相似文献   

13.
Members of the MILDEW RESISTANCE LOCUS O (MLO) gene family confer susceptibility to powdery mildews in different plant species, and their existence therefore seems to be disadvantageous for the plant. We recognized that expression of the Arabidopsis MLO2 gene is induced after inoculation with the bacterial pathogen Pseudomonas syringae, promoted by salicylic acid (SA) signaling, and systemically enhanced in the foliage of plants exhibiting systemic acquired resistance (SAR). Importantly, distinct mlo2 mutant lines were unable to systemically increase resistance to bacterial infection after inoculation with P. syringae, indicating that the function of MLO2 is necessary for biologically induced SAR in Arabidopsis. Our data also suggest that the close homolog MLO6 has a supportive but less critical role in SAR. In contrast to SAR, basal resistance to bacterial infection was not affected in mlo2. Remarkably, SAR‐defective mlo2 mutants were still competent in systemically increasing the levels of the SAR‐activating metabolites pipecolic acid (Pip) and SA after inoculation, and to enhance SAR‐related gene expression in distal plant parts. Furthermore, although MLO2 was not required for SA‐ or Pip‐inducible defense gene expression, it was essential for the proper induction of disease resistance by both SAR signals. We conclude that MLO2 acts as a critical downstream component in the execution of SAR to bacterial infection, being required for the translation of elevated defense responses into disease resistance. Moreover, our data suggest a function for MLO2 in the activation of plant defense priming during challenge by P. syringae.  相似文献   

14.
Biotic elicitors produced by plant pathogens or herbivore pests rapidly activate a range of plant chemical defenses when translocated to plant tissue. The fatty acid conjugate volicitin has proven to be a robust elicitor model for studying herbivore-induced plant defense responses. Here we review the role of insect-derived volicitin (N-[17-hydroxylinolenoyl]-L-glutamine) as an authentic elicitor of defense responses, specifically as an activator of signal volatiles that attract natural enemies of herbivore pests. Comparisons are drawn between volicitin as an elicitor of plant defenses and two other classes of signaling molecules, C6 green-leaf volatiles and C4 bacterial volatiles that appear to prime plant defenses thereby enhancing the capacity to mobilize cellular defense responses when a plant is faced with herbivore or pathogen attack.  相似文献   

15.
In mammals, lipid bodies play a key role during pathological and infectious diseases. However, our knowledge on the function of plant lipid bodies, apart from their role as the major site of lipid storage in seed tissues, remains limited. Here, we provide evidence that a calcium‐dependent protein kinase (CPK) mediates pathogen resistance in Arabidopsis. AtCPK1 expression is rapidly induced by fungal elicitors. Loss‐of‐function mutants of AtCPK1 exhibit higher susceptibility to pathogen infection compared to wild‐type plants. Conversely, over‐expression of AtCPK1 leads to accumulation of salicylic acid (SA) and constitutive expression of SA‐regulated defence and disease resistance genes, which, in turn, results in broad‐spectrum protection against pathogen infection. Expression studies in mutants affected in SA‐mediated defence responses revealed an interlocked feedback loop governing AtCPK1 expression and components of the SA‐dependent signalling pathway. Moreover, we demonstrate the dual localization of AtCPK1 in lipid bodies and peroxisomes. Overall, our findings identify AtCPK1 as a component of the innate immune system of Arabidopsis plants.  相似文献   

16.
The small phenolic molecule salicylic acid (SA) plays a key role in plant defense. Significant progress has been made recently in understanding SA-mediated defense signaling networks. Functional analysis of a large number of genes involved in SA biosynthesis and regulation of SA accumulation and signal transduction has revealed distinct but interconnecting pathways that orchestrate the control of plant defense. Further studies utilizing combinatorial approaches in genetics, molecular biology, biochemistry and genomics will uncover finer details of SA-mediated defense networks as well as further insights into the crosstalk of SA with other defense signaling pathways. The complexity of defense networks illustrates the capacity of plants to integrate multiple developmental and environmental signals into a tight control of the costly defense responses.Key words: salicylic acid, disease resistance, signal transduction, Arabidopsis, Pseudomonas syringaePlants have evolved sophisticated defense mechanisms to ward off attacks from pathogens. In addition to pre-formed physical/chemical barriers, plants can actively monitor the presence of pathogens and subsequently activate defense signaling networks, which in turn restrict the further growth and spread of pathogens.The small phenolic compound salicylic acid (SA) plays a central role in plant defense signaling. It is required for recognition of pathogen-derived components and subsequent establishment of local resistance in the infected region as well as systemic resistance at the whole plant level.13 SA accumulation is inducible upon infections of various pathogens, treatment with elicitors from pathogens, and stress conditions.35 Exogenous application of SA and its synthetic analogs to plants is sufficient to invoke disease resistance.69 Disruption of SA accumulation and/or signaling by mutations or by a transgenic SA hydrolase encoded by the bacterial gene nahG greatly compromises defense against pathogens.10 In addition, the phytohormones jasmonic acid (JA) and ethylene (ET) regulate SA-mediated defense as well as many aspects of plant development. Emerging evidence also implicates additional phytohormones in plant defense, two of which, auxin and abscisic acid, were recently shown to impact the SA pathway.11,12The past two decades have witnessed exciting progress made towards a comprehensive understanding of defense networks in the model plant Arabidopsis, especially those regulated by SA. The discovery of an expanding array of genes involved in SA-mediated defense suggests the complexity of defense networks. Surprisingly, information on functional relationships among many defense genes is sparse. Connecting the dots (genes) on the defense map to form pathways, which are further interconnected into complex defense networks, still remains a challenging task. This review focuses on our current understanding of the interactions among genes that regulate three key sub-circuits of the SA pathway: SA biosynthesis, SA accumulation and SA signal transduction. Discussions of the crosstalk between components involved in the SA pathway and those in other defense pathways can be found in some excellent reviews.1317  相似文献   

17.
The activities of the enzymes responsible for cell-wall strengthening and salicylic acid (SA) content in Norway spruce seedlings were investigated after inoculation with the ectomycorrhizal fungus Pisolithus tinctorius or the pathogen Heterobasidion annosum, and after treatment with elicitors from both of these fungi. Inoculation with both fungi increased guaiacol peroxidase (POD) activity in the roots of the pathogen-inoculated seedlings during the earliest phases of colonisation, and induced the activities of several POD isoforms. Two of these were only seen in pathogen-inoculated seedlings and corresponded with increased POD activity against ferulic acid. Colonisation with H. annosum triggered an increase in phenylalanine ammonia lyase (PAL) activity in the roots of the spruce seedlings, which was followed by an accumulation of free SA. One month after inoculation levels of free SA were increased also in the shoots of H. annosum-inoculated seedlings. In contrast increase in free SA content in the roots of P. tinctorius-inoculated seedlings was only transient. Similarly to inoculation, treatment with elicitors of H. annosum increased the PAL and POD activity, as well as SA content in the roots of spruce seedlings. A positive correlation between PAL activity and SA content in the H. annosum-inoculated seedlings and accumulation of SA precursors in the phenylpropanoid pathway indicate that the plant defence mechanisms, during which SA is synthesised through the PAL pathway, are exploited by H. annosum for facilitation of colonisation.  相似文献   

18.
Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O‐methyltransferases. In order to elaborate the mechanism of MeSA synthesis in tomato, we screened a set of O‐methyltransferases for activity against multiple substrates. An enzyme that specifically catalyzes methylation of SA, SlSAMT, as well as enzymes that act upon jasmonic acid and indole‐3‐acetic acid were identified. Analyses of transgenic over‐ and under‐producing lines validated the function of SlSAMT in vivo. The SlSAMT gene was mapped to a position near the bottom of chromosome 9. Analysis of MeSA emissions from an introgression population derived from a cross with Solanum pennellii revealed a quantitative trait locus (QTL) linked to higher fruit methyl salicylate emissions. The higher MeSA emissions associate with significantly higher SpSAMT expression, consistent with SAMT gene expression being rate limiting for ripening‐associated MeSA emissions. Transgenic plants that constitutively over‐produce MeSA exhibited only slightly delayed symptom development following infection with the disease‐causing bacterial pathogen, Xanthomonas campestris pv. vesicatoria (Xcv). Unexpectedly, pathogen‐challenged leaves accumulated significantly higher levels of SA as well as glycosylated forms of SA and MeSA, indicating a disruption in control of the SA‐related metabolite pool. Taken together, the results indicate that SlSAMT is critical for methyl salicylate synthesis and methyl salicylate, in turn, likely has an important role in controlling SA synthesis.  相似文献   

19.
To clarify the mechanism of fruit disease resistance activated by sweating treatment, ‘Guoqing NO.1’ Satsuma mandarin (Citrus unshiu Marc.) fruits were treated by sweating, which is a traditional prestorage treatment in China. Subsequently, we performed inoculation and physiological characterization, two‐dimensional gel electrophoresis (2‐DE) proteomics analysis and metabonomics analysis based on gas chromatography coupled to mass spectrometry (GC‐MS) and high‐performance liquid chromatography/electrospray ionization‐time of flight‐mass spectrometry (HPLC‐qTOF‐MS). The results showed that sweating treatment significantly inhibited pathogen infection without negatively affecting the fruit commercial quality. In addition, sweating treatment rapidly promoted the accumulation of amino acids (such as proline and serine). Meanwhile, hydrogen peroxide (H2O2) and salicylic acid (SA) were significantly accumulated in the sweating‐treated fruit. Thereafter, some stress‐response proteins and metabolites [such as ascorbate peroxidase (APX), β‐1,3‐glucanase, vanillic acid and rutin] which can be induced by SA were also significantly increased in the sweating‐treated fruit. Taken together, the disease resistance induced by sweating treatment might be attributed to: (1) the induction of the accumulation of amino acids; and (2) the accumulation of SA and subsequent activation of SA‐induced resistance pathway, which can induce the stress‐response proteins and metabolites that can directly inhibit pathogen development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号