首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two 2-yr crops of tropical spider lily (Hymenocallis littoralis) plants were grown in field soil in clear-plastic-wall open-top enclosures in the Sonoran Desert environment of central Arizona. Half of the plants were exposed to ambient air of 400 ppm atmospheric CO(2) concentration and half of them were exposed to air of 700 ppm CO(2). This 75% increase in the air's CO(2) content resulted in a 48% increase in aboveground plant biomass and a 56% increase in belowground (bulb) biomass. It also increased the concentrations of five bulb constituents that have been demonstrated to possess anticancer and antiviral activities. Mean percentage increases in these concentrations were 6% for a two-constituent (1:1) mixture of 7-deoxynarciclasine and 7-deoxy-trans-dihydronarciclasine, 8% for pancratistatin, 8% for trans-dihydronarciclasine, and 28% for narciclasine, for a mean active ingredient percentage concentration increase of 12%. Combined with the 56% increase in bulb biomass, these percentage concentration increases resulted in a mean active ingredient increase of 75% for the 75% increase in the air's CO(2) concentration used in our experiments.  相似文献   

2.
Senescence is a highly regulated process which is under genetic control. In monocarpic plants, the onset of fruit development is the most important factor initiating the senescence process. During senescence, a large fraction of plant nutrients is reallocated away from vegetative tissues into generative tissues. Senescence may therefore be regarded as a highly effective salvage mechanism to save nutrients for the offspring. CO(2) enrichment, besides increasing growth and yield of C(3) plants, has often been shown to accelerate leaf senescence. C(3) plants grown under elevated CO(2) experience alterations in their nutrient relations. In particular their tissue nitrogen concentrations are always lower after exposure to elevated CO(2). We used a monocarpic C(3) crop - spring barley (Hordeum vulgare cv. Alexis) - grown in open-top field chambers to test the effects of CO(2) enrichment on growth and yield, on nitrogen acquisition and redistribution, and on the senescence process in flag leaves, at two applications of nitrogen fertilizer. CO(2) enrichment (650 vs. 366 μmol mol(-1)) caused an increase both in biomass and in grain yield by 38% (average of the two fertilizer applications) which was due to increased tillering. Total nitrogen uptake of the crops was not affected by CO(2) treatment but responded solely to the N supply. Nitrogen concentrations in grains and straw were significantly lower (-33 and -24%) in plants grown at elevated CO(2). Phenological development was not altered by CO(2) until anthesis. However, progress of flag leaf senescence as assessed by chlorophyll content, protein content and content of large and small subunit of RubisCO and of cytochrome b559 was enhanced under elevated CO(2) concentrations by approximately 4 days. We postulate that CO(2) enhanced flag leaf senescence in barley crops by increasing the nitrogen sink capacity of the grains.  相似文献   

3.
Seagrass ecosystems are expected to benefit from the global increase in CO 2 in the ocean because the photosynthetic rate of these plants may be Ci‐limited at the current CO 2 level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H+ across the membrane as in terrestrial plants. Here, we investigate the effects of CO 2 enrichment on both carbon and nitrogen metabolism of the seagrass Zostera noltii in a mesocosm experiment where plants were exposed for 5 months to two experimental CO 2 concentrations (360 and 700 ppm). Both the maximum photosynthetic rate (Pm) and photosynthetic efficiency (α) were higher (1.3‐ and 4.1‐fold, respectively) in plants exposed to CO 2‐enriched conditions. On the other hand, no significant effects of CO 2 enrichment on leaf growth rates were observed, probably due to nitrogen limitation as revealed by the low nitrogen content of leaves. The leaf ammonium uptake rate and glutamine synthetase activity were not significantly affected by increased CO 2 concentrations. On the other hand, the leaf nitrate uptake rate of plants exposed to CO 2‐enriched conditions was fourfold lower than the uptake of plants exposed to current CO 2 level, suggesting that in the seagrass Z. noltii nitrate is not cotransported with H+ as in terrestrial plants. In contrast, the activity of nitrate reductase was threefold higher in plant leaves grown at high‐CO 2 concentrations. Our results suggest that the global effects of CO 2 on seagrass production may be spatially heterogeneous and depend on the specific nitrogen availability of each system. Under a CO 2 increase scenario, the natural levels of nutrients will probably become limiting for Z. noltii. This potential limitation becomes more relevant because the expected positive effect of CO 2 increase on nitrate uptake rate was not confirmed.  相似文献   

4.
利用大型环境生长箱研究了两种幼龄沙地优势灌木柠条 (Caraganaintermedia) 和羊柴 (Hedysarummon golicum) 对CO2 浓度倍增和土壤干旱交互作用的响应。CO2 浓度倍增并没有改善两种沙生灌木叶片的水分状况, 而土壤干旱使叶片的相对含水量 (RWC) 显著降低。在土壤水分充足条件下, CO2 浓度倍增促进两种沙生灌木植株生长, 在干旱条件下则主要促进根的生长, 提高根冠比。土壤干旱显著减少了植株生物量, 但相对促进了根的生长, 特别是显著提高了羊柴的根冠比。CO2 倍增使稳定性碳同位素组分 (δ13 C) 降低, 但土壤干旱使之增加。两种沙生灌木叶片与根部的δ13 C值呈极显著线性关系, 羊柴的斜率大于柠条的, 表明前者叶片与根部在光合产物分配上具有较高的生态可塑性, 这和干旱条件下羊柴的根冠比增加相关联。羊柴的“源库”调节特性反映了对土壤水分胁迫具有较高的耐性。  相似文献   

5.
付雪  叶乐夫  戈峰 《生态学报》2010,30(13):3575-3583
以CO2浓度为主处理因子,研究了加倍CO2浓度和对照大气CO2浓度条件下,烟蚜、马铃薯Y病毒N株(PVYN)以及二者共同作用下烟草各指标的响应。结果表明,在当前CO2浓度条件下,PVYN、烟蚜及两者联合作用对烟草生物量影响不显著;而在未来高CO2浓度条件下,PVYN、烟蚜及两者联合作用对烟草生物量影响很大。CO2浓度升高后,PVYN和蚜虫二者联合作用显著降低烟草产量,危害加重,高CO2的"肥料"作用被极大地削弱。在有烟蚜、PVYN以及两者共同作用时烟草的化学物质及主要的次生代谢物烟碱的含量对CO2浓度升高的响应也发生一定的变化,表现在:高CO2浓度条件下,蚜虫、蚜虫与PVYN共同作用显著增加了烟草的含氮量;显著减少了烟叶含糖量;PVYN及其与蚜虫共同作用显著升高叶片可溶性蛋白含量;当高CO2浓度下,各处理的烟草烟碱含量均显著下降,而且PVYN感染的烟叶烟碱含量无论在哪一种CO2浓度条件下,都比无毒无虫的对照烟叶烟碱含量升高。结果显示,烟蚜和马铃薯Y病毒N株(PVYN)对烟草的产量、营养物质及防御物质都有影响;CO2浓度升高对烟草的生长有促进作用,增加了烟草的产量,但蚜虫的危害和PVYN感染使烟草产量下降,在高CO2浓度条件下,烟蚜和PVYN共同作用相对于目前CO2浓度对烟草产量的危害加重。  相似文献   

6.
Two cultivars of soybean (Glycine max cv. Bragg and PK 472) were subjected to elevated concentrations of CO(2) (600 &mgr;l l(-1)) and/or SO(2) (0.06 &mgr;l l(-1)), for 8 h from germination to grain maturity in open top chambers under field conditions to assess the modification in response to SO(2) exposure resulting form CO(2) enrichment. Exposure to SO(2) alone resulted in reductions in plant growth, biomass and yield, as well as declines in foliar starch and protein content in both the cultivars of soybean. Elevated CO(2) stimulated plant growth, yield and enhanced foliar starch content, photosynthesis and WUE in both the cultivars. In plants exposed to the combination of elevated CO(2)+SO(2), the adverse influence of SO(2) was mitigated by CO(2) enrichment. This effect was considered to result from the provision of extra carbon sources required for repair and detoxification processes and a reduction in SO(2) uptake through reduction in stomatal conductance. PK 472 exhibited greater sensitivity to SO(2) than Bragg. PK 472 also showed greater stimulation of yield under CO(2)+SO(2) treatment than Bragg.  相似文献   

7.
Long-term and short-term effects of CO2 enrichment on dark respiration were investigated using soybean (Glycine max [L.] Merr.) plants grown at either 35.5 or 71.0 Pa CO2. Indirect effects, or effects of growth in elevated CO2, were examined using a functional model that partitioned respiration into growth and maintenance components. Direct effects, or immediate effects of a short-term change in CO2, were examined by measuring dark respiration, first, at the CO2 partial pressure at which plants were grown, and second, after equilibration in the reciprocal CO2 partial pressure. The functional component model indicated that the maintenance coefficient of respiration increased 34% with elevated CO2, whereas the growth coefficient was not significantly affected. Changes in maintenance respiration were correlated with a 33% increase in leaf total nonstructural carbohydrate concentration, but leaf nitrogen content of soybean leaves was not affected by CO2 enrichment. Thus, increased maintenance respiration may be a consequence of increased nonstructural carbohydrate accumulation. When whole soybean plants were switched from low CO2 to high CO2 for a brief period, leaf respiration was always reduced. However, this direct effect of CO2 partial pressure was approximately 50% less in plants grown in elevated CO2. We conclude from this study that there are potentially important effects of CO2 enrichment on plant respiration but that the effects are different for plants given a short-term increase in CO2 partial pressure versus plants grown in elevated CO2.  相似文献   

8.
Teng N  Wang J  Chen T  Wu X  Wang Y  Lin J 《The New phytologist》2006,172(1):92-103
Leaves of Arabidopsis thaliana grown under elevated or ambient CO2 (700 or 370 micromol mol(-1), respectively) were examined for physiological, biochemical and structural changes. Stomatal characters, carbohydrate and mineral nutrient concentrations, leaf ultrastructure and plant hormone content were investigated using atomic absorption spectrophotometry, transmission electron microscopy and enzyme-linked immunosorbent assay (ELISA). Elevated CO2 reduced the stomatal density and stomatal index of leaves, and also reduced stomatal conductance and transpiration rate. Elevated CO2 increased chloroplast number, width and profile area, and starch grain size and number, but reduced the number of grana thylakoid membranes. Under elevated CO2, the concentrations of carbohydrates and plant hormones, with the exception of abscisic acid, increased whereas mineral nutrient concentrations declined. These results suggest that the changes in chloroplast ultrastructure may primarily be a consequence of increased starch accumulation. Accelerated A. thaliana growth and development in elevated CO2 could in part be attributed to increased foliar concentrations of plant hormones. The reductions in mineral nutrient concentrations may be a result of dilution by increased concentrations of carbohydrates and also of decreases in stomatal conductance and transpiration rate.  相似文献   

9.
1. The nitrogen limitation hypothesis posits that phytophagous insects benefit from nitrogen enrichment of their host plants through a reduction of the concentration of toxic compounds and an increase of free amino acids and proteins. However, species' response to nitrogen enrichment varies substantially and high nitrogen levels are associated with population decline, suggesting there are major costs to feeding on nitrogen‐rich host plants. 2. To test the hypothesis that larval growth performance is maximal at intermediate nitrogen enrichment, nitrogen levels were measured in 18 populations of the host plant of Lycaena helle, a specialist butterfly inhabiting nutrient‐poor wet meadows. The nitrogen content of host plants was then modified to mirror average natural nitrogen levels (C), highest field‐recorded levels (T1), and levels higher than those observed across our study populations (T2). 3. Caterpillars fed with T1 leaves had a greater maximum body mass than caterpillars of the C group because of their improved food assimilation during the early stages of their development. Caterpillars of C and T2 groups had similar growth patterns but high nitrogen content had detrimental effects, as caterpillars fed with T2 leaves had a slower ingestion rate than C and T1 groups. 4. Quantifying the fitness consequences of these changes in growth performance is necessary to fully understand the implications of nitrogen enrichment for L. helle (rapid growth may result in fitness costs). However, conservation plans for this emblematic glacial relict species should also consider the preservation of its host plant quality to ensure its persistence.  相似文献   

10.
Ocean acidification and the loss of phenolic substances in marine plants   总被引:2,自引:0,他引:2  
Rising atmospheric CO(2) often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO(2) availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO(2) enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO(2) / low pH conditions of OA decrease, rather than increase, concentrations of phenolic protective substances in seagrasses and eurysaline marine plants. We observed a loss of simple and polymeric phenolics in the seagrass Cymodocea nodosa near a volcanic CO(2) vent on the Island of Vulcano, Italy, where pH values decreased from 8.1 to 7.3 and pCO(2) concentrations increased ten-fold. We observed similar responses in two estuarine species, Ruppia maritima and Potamogeton perfoliatus, in in situ Free-Ocean-Carbon-Enrichment experiments conducted in tributaries of the Chesapeake Bay, USA. These responses are strikingly different than those exhibited by terrestrial plants. The loss of phenolic substances may explain the higher-than-usual rates of grazing observed near undersea CO(2) vents and suggests that ocean acidification may alter coastal carbon fluxes by affecting rates of decomposition, grazing, and disease. Our observations temper recent predictions that seagrasses would necessarily be "winners" in a high CO(2) world.  相似文献   

11.
Large mammalian herbivores in grassland ecosystems influence plant growth dynamics in many ways, including the removal of plant biomass and the return of nutrients to the soil. A 10-week growth chamber experiment examined the responses of Sporobolus kentrophyllus from the heavily grazed short-grass plains of Serengeti National Park, Tanzania, to simulated grazing and varying nitrogen nutrition. Plants were subjected to two clipping treatments (clipped and unclipped) and five nitrogen levels (weekly applications at levels equivalent to 0, 1, 5, 10, and 40 g N m−2), the highest being equivalent to a urine hit. Tiller and stolon production were measured weekly. Total biomass at harvest was partitioned by plant organ and analyzed for nitrogen and mineral element composition. Tiller and stolon production reached a peak at 3–5 weeks in unclipped plants, then declined drastically, but tiller number increased continually in clipped plants; this differential effect was enhanced at higher N levels. Total plant production increased substantially with N supply, was dominated by aboveground production, and was similar in clipped and unclipped plants, except at high nitrogen levels where clipped plants produced more. Much of the standing biomass of unclipped plants was standing dead and stem; most of the standing biomass of clipped plants was live leaf with clipped plants having significantly more leaf than unclipped plants. However, leaf nitrogen was stimulated by clipping only in plants receiving levels of N application above 1 g N m−2 which corresponded to a tissue concentration of 2.5% N. Leaf N concentration was lower in unclipped plants and increased with level of N. Aboveground N and mineral concentrations were consistently greater than belowground levels and while clipping commonly promoted aboveground concentrations, it generally diminished those belowground. In general, clipped plants exhibited increased leaf elemental concentrations of K, P, and Mg. Concentrations of B, Ca, K, Mg, and Zn increased with the level of N. No evidence was found that the much greater growth associated with higher N levels diminished the concentration of any other nutrient and that clipping coupled with N fertilization increased the total mineral content available in leaf tissue. The results suggest that plants can (1) compensate for leaf removal, but only when N is above a critical point (tissue [N] 2.8%) and (2) grazing coupled with N fertilization can increase the quality and quantity of tissue available for herbivore removal. Received: 25 August 1997 / Accepted: 14 April 1998  相似文献   

12.
大气一氧化碳浓度升高对植物生长的影响   总被引:20,自引:2,他引:18  
大气CO2浓度同对植物生长有促进作用,对C3植物生长的促进作用最大。短期CO2浓度升高时,植物光和速率增加;在长期CO2浓度升高条件下,植物光鸽上降并发生光合适应现象。这可能是植物在长期CO2浓度升高条件下植物源库关系不平衡引起的反馈抑制作用以及营养吸收不能满足光合速率增加的需要所引起Rubiseo活必和含量下降。在CO2浓度升高条件下植物的呼吸也会发生变化,根的分枝和数量增多,根系的分泌量和吸收  相似文献   

13.
The effects of CO2 enrichment on various ecophysiological parameters of tropical seagrass Thalassia hemprichii(Ehrenb.)Aschers were tested.T.hemprichii,collected from a seagrass bed in Xincun Bay,Hainan island of Southern China,was cultured at 4 CO2(aq)concentrations in flow-through seawater aquaria bubbled with CO2.CO2 enrichment considerably enhanced the relative maximum electron transport rate(RETRmax)and minimum saturating irradiance(Ek)of T.hemprichii.Leaf growth rate of CO2enriched plants was significantly higher than that in unenriched treatment.Nonstructural carbohydrates(NSC)of T.hemprichii,especially in belowground tissues,increased strongly with elevated CO2(aq),suggesting a translocation of photosynthate from aboveground to belowground tissues.Carbon content in belowground tissues showed a similar response with NSC,while in aboveground tissues,carbon content was not affected by CO2 treatments.In contrast,with increasing CO2(aq),nitrogen content in aboveground tissues markedly decreased,but nitrogen content in belowground was nearly constant.Carbon: nitrogen ratio in both tissues were obviously enhanced by increasing CO2(aq).Thus,these results indicate that T.hemprichii may respond positively to CO2-induced acidification of the coastal ocean.Moreover,the CO2-stimulated improvement of photosynthesis and NSC content may partially offset negative effects of severe environmental disturbance such as underwater light reduction.  相似文献   

14.
The coupling of root-associated nitrogen fixation and plant photosynthesis was examined in the salt marsh grass Spartina alterniflora. In both field experiments and hydroponic assay chambers, nitrogen fixation associated with the roots was rapidly enhanced by stimulating plant photosynthesis. A kinetic analysis of acetylene reduction activity (ARA) showed that a five-to sixfold stimulation occurred within 10 to 60 min after the plant leaves were exposed to light or increased CO2 concentrations (with the light held constant). In field experiments, CO2 enrichment increased plant-associated ARA by 27%. Further evidence of the dependence of ARA on plant photosynthate was obtained when activity in excised roots was shown to decrease after young greenhouse plants were placed in the dark. Seasonal variation in the ARA of excised plant roots from field cores appears to be related to the annual cycle of net photosynthesis in S. alterniflora.  相似文献   

15.
The coupling of root-associated nitrogen fixation and plant photosynthesis was examined in the salt marsh grass Spartina alterniflora. In both field experiments and hydroponic assay chambers, nitrogen fixation associated with the roots was rapidly enhanced by stimulating plant photosynthesis. A kinetic analysis of acetylene reduction activity (ARA) showed that a five-to sixfold stimulation occurred within 10 to 60 min after the plant leaves were exposed to light or increased CO2 concentrations (with the light held constant). In field experiments, CO2 enrichment increased plant-associated ARA by 27%. Further evidence of the dependence of ARA on plant photosynthate was obtained when activity in excised roots was shown to decrease after young greenhouse plants were placed in the dark. Seasonal variation in the ARA of excised plant roots from field cores appears to be related to the annual cycle of net photosynthesis in S. alterniflora.  相似文献   

16.
The effects of CO2 enrichment on various ecophysiological parameters of tropical seagrass Thalassia hemprichii(Ehrenb.)Aschers were tested.T.hemprichii,collected from a seagrass bed in Xincun Bay,Hainan island of Southern China,was cultured at 4 CO2(aq)concentrations in flow-through seawater aquaria bubbled with CO2.CO2 enrichment considerably enhanced the relative maximum electron transport rate(RETRmax)and minimum saturating irradiance(Ek)of T.hemprichii.Leaf growth rate of CO2enriched plants was significantly higher than that in unenriched treatment.Nonstructural carbohydrates(NSC)of T.hemprichii,especially in belowground tissues,increased strongly with elevated CO2(aq),suggesting a translocation of photosynthate from aboveground to belowground tissues.Carbon content in belowground tissues showed a similar response with NSC,while in aboveground tissues,carbon content was not affected by CO2 treatments.In contrast,with increasing CO2(aq),nitrogen content in aboveground tissues markedly decreased,but nitrogen content in belowground was nearly constant.Carbon: nitrogen ratio in both tissues were obviously enhanced by increasing CO2(aq).Thus,these results indicate that T.hemprichii may respond positively to CO2-induced acidification of the coastal ocean.Moreover,the CO2-stimulated improvement of photosynthesis and NSC content may partially offset negative effects of severe environmental disturbance such as underwater light reduction.  相似文献   

17.
The response of seed production to CO(2) concentration ([CO(2)]) is known to vary considerably among C(3) annual species. Here we analyse the interspecific variation in CO(2) responses of seed production per plant with particular attention to nitrogen use. Provided that seed production is limited by nitrogen availability, an increase in seed mass per plant results from increase in seed nitrogen per plant and/or from decrease in seed nitrogen concentration ([N]). Meta-analysis reveals that the increase in seed mass per plant under elevated [CO(2)] is mainly due to increase in seed nitrogen per plant rather than seed [N] dilution. Nitrogen-fixing legumes enhanced nitrogen acquisition more than non-nitrogen-fixers, resulting in a large increase in seed mass per plant. In Poaceae, an increase in seed mass per plant was also caused by a decrease in seed [N]. Greater carbon allocation to albumen (endosperm and/or perisperm) than the embryo may account for [N] reduction in grass seeds. These differences in CO(2) response of seed production among functional groups may affect their fitness, leading to changes in species composition in the future high-[CO(2)] ecosystem.  相似文献   

18.
The unabated increase in global atmospheric CO(2) is expected to induce physiological changes in plants, including reduced foliar nitrogen, which are likely to affect herbivore densities. This study employs a field-based CO(2 )enrichment experiment at Kennedy Space Center, Florida, to examine plant-herbivore (insect) interactions inside eight open-topped chambers with elevated CO(2) (710 ppm) and eight control chambers with ambient CO(2). In elevated CO(2) we found decreased herbivore densities per 100 leaves, especially of leaf miners, across all five plant species we examined: the oak trees Quercus myrtifolia, Q. geminata, and Q. chapmanii, the nitrogen-fixing vine Galactia elliottii and the shrub Vaccinium myrsinites. Both direct and indirect effects of lowered plant nitrogen may influence this decrease in herbivore densities. Direct effects of lowered nitrogen resulted in increased host-plant related death and an increase in compensatory feeding: per capita herbivore leaf consumption in elevated CO(2) was higher than in ambient CO(2). Indirectly, compensatory feeding may have prolonged herbivore development and increased exposure to natural enemies. For all leaf miners we examined, mortality from natural enemies increased in elevated CO(2). These increases in host-plant induced mortality and in attack rates by natural enemies decreased leaf miner survivorship, causing a reduction in leaf miner density per 100 leaves. Despite increased leaf production in elevated CO(2) from the carbon fertilization effect, absolute herbivore abundance per chamber was also reduced in elevated CO(2). Because insects cause premature leaf abscission, we also thought that leaf abscission would be decreased in elevated CO(2). However, for all plant species, leaf abscission was increased in elevated CO(2), suggesting a direct effect of CO(2) on leaf abscission that outweighs the indirect effects of reduced insect densities on leaf abscission.  相似文献   

19.
Information on the effects of enriched CO2 on both the chemical composition of plants and the consequences of such changes for performance of a herbivore and its predator is an important first step in understanding the responses of plants and insects to global environmental change. We examined interactions across three trophic levels, cotton, Gossypium hirsutum, an aphid herbivore, Aphis gossypii Glover, and a coccinellid predator, Propylaea japonica (Thunberg), as affected by elevated CO2 concentrations and crop cultivars. Plant carbon:nitrogen (C:N) ratios, condensed tannin, and gossypol content were significantly higher, and nitrogen content was significantly lower in plants exposed to elevated CO2 levels compared with that in plants exposed to ambient CO2. Cotton aphid survivorship significantly increased and free fatty acid content decreased with increased CO2 concentrations. No significant differences in survival and lifetime fecundity of P. japonica were observed between cultivars and CO2 concentration treatments. However, stage-specific larval durations of the lady beetle were significantly longer when fed aphids from elevated CO2 concentrations. Our results indicate that high gossypol in the cotton host plant had an antibiotic effect on A. gossypii and produced a positive effect on growth and development of P. japonica at the third trophic level. However, elevated CO2 concentrations showed a negative effect on P. japonica. We speculate that A. gossypii may become a more serious pest under an environment with elevated CO2 concentrations because of increased survivorship of aphid and longer development time of lady beetle.  相似文献   

20.
* A previously published model of crop nitrogen (N) status based on intercepted photosynthetically active radiation (R(i), mol per plant) suggested that plant organic N accumulation is related to R(i) by a constant ratio, defined hereafter as the radiation use efficiency for N (NRUE). The aim of this paper was to compare the effects of N nutrition and CO2 enrichment on NRUE and RUE (radiation use efficiency for biomass accumulation). * In three unrelated glasshouse experiments, tomato plants (Solanum lycopersicum) grown in hydroponics were fed for 28 d (exponential growth) with full solutions containing constant NO3(-) concentrations ([NO3(-)]) ranging from 0.05 to 15 mol m(-3), both under ambient or CO2-enriched (1000 microl l(-1)) air. * Each experiment comprised five harvests. Low [NO3(-)] (< 0.3 mol m(-3)) limited growth via leaf area (LA) restriction and decreased light interception. CO2 enrichment enhanced dry weight and LA. RUE was not affected by [NO3(-)], but increased under CO2-enriched air. By contrast, NRUE was not affected by [NO3(-)] or CO2 enrichment. * It is suggested that the radiation efficiency for organic N acquisition (NRUE) did not depend on C or N nutrition for young plants grown under unstressed conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号