首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
An enzyme which catalyzes the degradation of polyvinyl alcohol) (PVA) oxidized by secondary alcohol oxidase, in which hydroxyl groups of PVA are partially converted to carbonyl groups, has been purified from a fraction adsorbed on DEAE-Sephadex at pH 7.0 from PVA-degrading enzyme activities produced by a bacterial symbiotic mixed culture in a minimal medium containing PVA as a sole source of carbon and energy. The purified enzyme was electrophoretically homogeneous in the absence and presence of SDS.

The enzyme is a single polypeptide with a molecular weight of about 36,000 and has an isoelectric point of 5.1. The N- and C-terminal amino acid residues are both alanine. The enzyme is most active at pH 6.5 and at 40°C and is stable between pH 6.0 and 9.0 and at temperatures below 45°C. The enzyme is inhibited by Hg2+ and is restored by the addition of reduced glutathione, although p-chloromercuribenzoate has no effect.

The enzyme was active on oxidized PVA, but not on PVA and on various low molecular weight carbonyl compounds examined. The enzyme reaction on oxidized PVA resulted in a rapid decrease in viscosity, a fall of pH, and production of carboxylic acids. The enzyme, therefore, is considered to be an oxidized PVA hydrolase.

The enzyme shows a common antigenicity in immunodiffusion and neutralization reactions with antisera to an oxidized PVA hydrolase previously purified from another fraction adsorbed on SP-Sephadex at pH 7.0 from the PVA-degrading enzyme activities [Agric. Biol. Chem., 45, 63 (1981)]. The relations between these two oxidized PVA hydrolases are discussed.  相似文献   

2.
We have isolated a poly(vinyl alcohol) (PVA)-degrading bacterium from an activated sludge sample obtained from the drainage of a dyeing factory. Enrichment cultures were performed in media containing PVA as the sole or major carbon source. After several rounds of cultivation on liquid and solid media, we were able to isolate a single colony with PVA-degrading ability (strain PVA3). The bacterium could degrade PVA in the absence of symbionts or cofactors such as pyrroloquinoline quinone (PQQ). Over 90% of PVA, at an initial concentration of 0.1%, was degraded within a 6-day cultivation. Degradation was confirmed by both iodometric methods and gel permeation chromatography. Examination of the PVA attached to the cells revealed a large increase in carbonyl groups, suggesting the oxidation of hydroxyl groups of the polymer on the surfaces of cells. Addition of PQQ to the culture medium did not enhance the growth and the PVA-degrading rates of strain PVA3. Furthermore, we found that cells grown on PVA generated hydrogen peroxide upon the addition of PVA. The results strongly suggest that the initial oxidation of PVA is mediated via a PVA oxidase, and not a PQQ-dependent dehydrogenase. A biochemical and phylogenetic characterization of the bacterium was performed. The sequence of the 16S ribosomal RNA gene of the bacterium indicated a phylogenetic position of the strain within the genus Sphingopyxis, and the strain was therefore designated Sphingopyxis sp. PVA3.  相似文献   

3.
A fungal strain able to grow on polyvinyl alcohol (PVA) as sole carbon source was isolated from activated sludge of a textile factory. Morphological characteristics showed that this strain belonged to Penicillium sp., and, to our knowledge, this is the first report of PVA degradation by a strain of Penicillum sp. When 0.5% PVA was used as the carbon source in culture medium, it could be completely degraded after 12 days. This strain was found to produce and secrete an inducible PVA-degrading enzyme. High PVA concentration and oxygen transfer were favourable for PVA-degrading enzyme synthesis by Penicillium sp. cultured in shake-flasks. Moreover, Penicillum sp. cultured in PVA medium may spontaneously produce more catalase to decompose H2O2, a product of PVA oxidation by PVA oxidase, for protection of the cells from H2O2 damage. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
A novel enzyme, pyrroloquinoline quinone (PQQ)-dependent polyvinyl alcohol (PVA) dehydrogenase, was found in and partially purified from the membrane fraction of a PVA-degrading symbiont, Pseudomonas sp. strain VM15C. The enzyme required PQQ for PVA dehydrogenation with phenazine methosulfate, phenazine ethosulfate, and 2,6-dichlorophenolindophenol as electron acceptors and did not show PVA oxidase activity leading to H2O2 formation. The enzyme was active toward low-molecular-weight secondary alcohols rather than primary alcohols. A membrane-bound PVA oxidase was also present in cells of VM15C. Although the purified oxidase showed a substrate specificity similar to that of PQQ-dependent PVA dehydrogenase and about threefold-higher PVA-dehydrogenating activity with phenazine methosulfate or phenazine ethosulfate than PVA oxidase activity with H2O2 formation, it was shown that the enzyme does not contain PQQ as the coenzyme, and PQQ did not affect its activity. Incubation of the membrane fraction of cells with PVA caused a reduction in the cytochrome(s) of the fraction.  相似文献   

5.
A novel enzyme, pyrroloquinoline quinone (PQQ)-dependent polyvinyl alcohol (PVA) dehydrogenase, was found in and partially purified from the membrane fraction of a PVA-degrading symbiont, Pseudomonas sp. strain VM15C. The enzyme required PQQ for PVA dehydrogenation with phenazine methosulfate, phenazine ethosulfate, and 2,6-dichlorophenolindophenol as electron acceptors and did not show PVA oxidase activity leading to H2O2 formation. The enzyme was active toward low-molecular-weight secondary alcohols rather than primary alcohols. A membrane-bound PVA oxidase was also present in cells of VM15C. Although the purified oxidase showed a substrate specificity similar to that of PQQ-dependent PVA dehydrogenase and about threefold-higher PVA-dehydrogenating activity with phenazine methosulfate or phenazine ethosulfate than PVA oxidase activity with H2O2 formation, it was shown that the enzyme does not contain PQQ as the coenzyme, and PQQ did not affect its activity. Incubation of the membrane fraction of cells with PVA caused a reduction in the cytochrome(s) of the fraction.  相似文献   

6.
In a mixed continuous culture of Pseudomonas putida VM15A and Pseudomonas sp. strain VM15C with polyvinyl alcohol (PVA) as the sole source of carbon, growth of the PVA-degrading bacterium VM15C and, hence, PVA degradation were limited by the growth factor, pyrroloquinoline quinone, produced by VM15A. Feeding of a carbon source for VM15A, ethanol, with PVA enhanced pyrroloquinoline quinone production and caused increases in the VM15C population and PVA degradation in a mixed continuous culture. There was an optimum range for PVA degradation of the ethanol concentration, although pyrroloquinoline quinone concentrations in continuous mixed cultures increased with increasing ethanol concentration.  相似文献   

7.
Du G  Liu L  Song Z  Hua Z  Zhu Y  Chen J 《Biotechnology journal》2007,2(6):752-758
A strain capable of using polyvinyl alcohol (PVA) as sole carbon source was isolated from soil samples of a textile factory. The 16S rDNA sequence analysis cell morphology, physiology and biochemistry showed that it belonged to Janthinobacterium sp. This is the first report to show that the screened Janthinobacterium sp. could degrade PVA. The optimum nutritional and environmental conditions for PVA-degrading enzyme production by Janthinobacterium sp. were investigated by single-factor tests. Under optimized nutritional and environmental condition in shake flasks, PVA-degrading enzyme reached 5.12 U/mL at 21 h. With PVA-degrading enzyme produced by Janthinobacterium sp. WSH04-01, 80% of PVA could be degraded from cotton fabrics in 3 h.  相似文献   

8.
Summary An actinomycete strain, which could produce an extracellular poly(vinyl alcohol) (PVA)-degrading enzyme, was isolated from a PVA-contaminated soil sample using PVA as the sole carbon source. The strain was identified as Streptomyces venezuelae according to the whole-nucleotide-sequence analysis of 16S rDNA, the morphological and the physiological characteristics. The strain produced 120 U/l extracellular PVA-degrading enzyme when PVA was used as the sole carbon source. When glucose was used as the sole carbon source, however, the extracellular enzyme activity was very low (12 U/l). This is the first report showing that an actinomycete strain can produce a PVA-degrading enzyme.  相似文献   

9.
聚乙烯醇生物降解研究进展   总被引:6,自引:0,他引:6  
聚乙烯醇(PVA)是一种在纺织和化工行业中广泛使用的难降解的高分子聚合物。随着人们对纺织工业清洁生产的关注,如何在退浆工艺中就实现对PVA的生物降解、减少PVA废水的排放,并避免化学退浆过程中高温和氧化造成的棉纤维损伤,是近年来纺织生物技术领域的研究热点。由于PVA降解菌种类不多、培养周期长,PVA降解酶酶活不高、提取不容易等原因,使PVA的生化降解研究还局限在PVA降解菌的筛选、PVA降解酶的酶学性质研究等方面,PVA降解酶还未在纺织工业上得到应用。本文综述了近年来国内外在PVA降解菌筛选、PVA降解酶提取及酶学性质、PVA生化降解机理等方面的研究进展,并讨论了PVA生化降解研究中存在的问题及发展方向。  相似文献   

10.
A total of 800 samples was taken from Taegu province, Korea, where many textile factories provide a source of polyvinyl alcohol (PVA) waste. These samples were screened for PVA-degrading bacteria. A new strain, SA3, was discovered which formed yellow colonies and used PVA as the sole carbon and energy source. Strain SA3 was identified as a Sphingomonas sp., based on the partial nucleotide sequence analysis of 16S ribosomal RNA, the presence of 2-hydroxymyristic acid (14:O 2-OH) and sphingolipids with d-17:0, d-18:0, d-19:1, and d-20:1 as the main dihydrosphingosines. This genus has not previously been reported as a PVA-degrading bacterium. Sphingomonas sp. SA3 needs a symbiote strain, SA2, for PVA degradation as a growth factor producer. In mixed cultures of these strains, the optimum temperature for PVA biodegradation ranged from 30 °C to 35 °C. The optimum pH was 8.0 and the most effective nitrogen source was NH4 +. Electronic Publication  相似文献   

11.
The effects of environmental conditions, including temperature, pH and dissolved oxygen, on growth and production of polyvinyl alcohol (PVA)-degrading enzymes of the newly-isolated strain Streptomyces venezuelae GY1 were investigated. The medium composition for strain GY1 was studied first by single factorial design and then optimized using a central composite design. PVA with high saponification is better for growth of, and PVA-degrading enzyme production by S. venezuelae GY1 compared with PVA with low saponification, in contrast with the characteristics of other bacteria producing PVA-degrading enzymes. The optimal temperature and initial pH for production of PVA-degrading enzyme by strain GY1 was 30°C and 7.0, respectively. The optimal medium composition for PVA-degrading enzyme production is: 1.01 g L?1 of PVA1799, 0.307 g L?1 of NaNO3 and 0.512 g L?1 of MgSO4?7H2O.  相似文献   

12.
A polyvinyl alcohol (PVA) oxidase-deficient mutant of Pseudomonas sp. strain VM15C, strain ND1, was shown to possess PVA dehydrogenase, in which pyrroloquinoline quinone (PQQ) functions as a coenzyme. The mutant grew on PVA and required PQQ for utilization of PVA as an essential growth factor. Incubation of the membrane fraction of the mutant with PVA caused cytochrome reduction of the fraction. Furthermore, it was found that in spite of the presence of PVA oxidase, the membrane fraction of strain VM15C grown on glucose without PQQ required PQQ for cytochrome reduction during incubation with PVA. The results provide evidence that PVA dehydrogenase couples with the electron transport chain of PVA-degrading bacteria but that PVA oxidase does not.  相似文献   

13.
Biodegradation of polyvinyl alcohol by a mixed microbial culture   总被引:1,自引:0,他引:1  
A mixed culture capable of degrading 1 g l−1 polyvinyl alcohol (PVA) completely was screened from sludge samples at Pacific Textile Factory, Wuxi, China. This mixed culture had stronger capability of degrading PVA with low polymerization and high saponification than degrading PVA with high polymerization and low saponification. Inorganic nitrogen source was more suitable for the mixed culture to grow and degrade PVA than organic nitrogen source. Microorganisms and relative abundance of this mixed culture were explored by terminal restriction fragment length polymorphism (T-RFLP). Small PVA molecules were detected in cell extracts of the mixed culture. This indicated that PVA degradation in the mixed culture was in fact a combined action of extracellular and intracellular enzymes. Two strains producing extracellular PVA-degrading enzyme were isolated from the mixed culture. They could individually degrade PVA1799 with polymerization of 1700 from initial average molecular weight 112,981 to 98,827 Da and 84,803 Da, respectively. However, only small amount of PVA124 in polymerization of 400 could be degraded by these two strains.  相似文献   

14.
A PVA-degrading enzyme was produced byPseudomonas vesicularis var.povalolyticus PH and accumulated intracellularly when grown in nutrient medium including tryptone and yeast extract without PVA. The internal enzyme activity increased with cell growth and was maximal when growth was maximal, whereas, external activity continued to increase. It was presumed that the enzyme secretion was induced by the presence of PVA in the culture medium. It was established that crude enzyme can be effectively recovered from the cell by osmotic shock treatment with sucrose or NaCl.  相似文献   

15.
An enzyme which catalyzes the oxidation of poly(vinyl alcohol) (PVA) has been purified from a fraction adsorbed to DEAE-Sephadex at pH 7.0 from PVA-degrading enzyme activities produced by a bacterial symbiotic mixed culture in a culture broth when the culture was grown in a minimal medium where PVA served as a sole source of carbon and energy. The enzyme was separated from a coexisting oxidized PVA hydrolase by dye-ligand chromatography on Matrex Gel Blue A. The purified enzyme was homogeneous as judged by polyacrylamide gel electrophoreses in the absence and presence of SDS.

The enzyme is a single polypeptide with a molecular weight of about 40,000 and has an isoelectric point of 4.5. The amino acid composition of the enzyme has been determined and found to have no histidine. The N- and C-terminal amino acid residues are both alanine. The enzyme solution is pink and shows absorption maxima at 276, 364, and 469 nm. One atom of non-heme iron has been detected per molecule in the enzyme.

The enzyme catalyzes the oxidation of PVA and also of various low molecular weight secondary alcohols to the corresponding ketones with the production of H202 and the consumption of 02. The molar ratio of these ketones, H202 and 02 is 1:1:1. The most effective electron acceptor is 02, while 2,6-dichlorophenolindophenol and nitro blue tetrazolium also serve as the acceptor with efficiencies to 02 of about 31 and 16%, respectively. The enzyme is, therefore, considered to be a secondary alcohol oxidase.

The enzyme is most active at pH 7.0 and at 45°C and is stable between pH 5.0 and 9.0 and at temperatures below 45°C. The activity is inhibited by Hg2+ and is restored by the addition of reduced glutathione, although p-chloromercuribenzoate has no effect.

The enzyme shows a common antigenicity in immunodiffusion and neutralization reactions with antisera to a secondary alcohol oxidase previously isolated from another fraction adsorbed on SP-Sephadex at pH 7.0 of the PVA-degrading enzyme activities [Agric. Biol. Chem., 43, 1225 (1979)]. The relations between these two secondary alcohol oxidases are discussed.  相似文献   

16.
Pseudomonas 0–3 strain which was isolated from soil can grow on polyvinyl alcohol (PVA) as a sole carbon source. When 0.5 per cent of PVA (500, 1500 or 2000) was employed as the carbon source in the culture medium, PVA was almost completely lost from the culture fluid after a week and the concentration of total organic carbon measured by a TOC analyzer decreased from the initial value of about 2700 ppm to 250~300 ppm after 7~10 days culture. This bacterium was found to produce and secrete an inducible enzyme which degrade PVA. The way by which this enzyme degrades PVA was examined and the results were obtained which suggested that PVA was broken down oxidatively in a way of endowise splitting. However, the mechanism of PVA degradation has not been clarified yet. The optimum pH and temperature for enzyme activity were examined and they were 7.5~8.5 and 35~45°C, respectively. Morphological and biological characteristics of this bacterium were examined and it was similar to a strain of Pseudomonas boreopolis.  相似文献   

17.
An addition of catalase or peroxidase into an agar plate containing poly(vinyl alcohol) (PVA), was effective for the isolation of PVA-degrading microorganisms. A Gram-negative bacterium, strain TK-2 (-group of proteobacteria), rapidly degraded a high molecular weight PVA to low molecular weight material after 1 day thereby producing oligomers of PVA as shown by gel permeation chromatography. Conversely, Sphingomonas strain TJ-7 did not produce any PVA oligomers, suggesting that the strain TJ-7 degraded PVA from the terminal ends of the molecules, whereas the strain TK-2 cleaved PVA at random.  相似文献   

18.
Cells of the amylolytic bacterium KB-1 (thought to be an Arthrobacter sp.) adhered (~70%) to the surface of plastic films composed of starch-poly (methylacrylate) graft copolymer (starch-PMA), but did not adhere (<10%) to films composed of polymethylacrylate (PMA), polyethylene (PE), carboxymethyl cellulose, or a mixture of PE plus poly (ethylene-coacrylic acid) (EAA), starch plus PE, or starch plus PE and EAA. About 30% of the cells adhered to gelatinized insoluble starch. Dithiothreitol (5 mM), EDTA (5 mM), and soluble starch (1%, wt/vol) had little effect on the adhesion of KB-1 cells to starch-PMA films. However, glutaraldehyde-fixed cells, azide-treated cells, and heat-killed cells did not bind to starch-PMA plastic, suggesting that the observed adhesion required cell viability. Culture supernatant from 5-day-old KB-1 cultures contained a proteolytic enzyme that inhibited cell adhesion to starch-PMA plastics. Trypsin-treated KB-1 cells also lost their ability to bind to starch-PMA plastic. When washed free of trypsin and suspended in fresh medium, trypsin-treated bacteria were able to recover adhesion activity in the absence, but not in the presence, of the protein synthesis inhibitor chloramphenicol. These results suggested that adhesion of KB-1 to starch-PMA plastic may be mediated by a cell surface protein. Although KB-1 bacteria bound to starch-PMA plastic, they did not appear to degrade starch in these films. Evidence of starch degradation was observed for starch-PE-EAA plastics, where <10% of the bacteria was bound, suggesting that cell adhesion may not be a prerequisite for degradation of some starch-containing plastics.  相似文献   

19.
Starch/poly(vinyl alcohol) (PVA) films were prepared with calcium chloride (CaCl(2)) as the plasticizer. The micro morphology of pure starch/PVA film and CaCl(2) plasticized starch/PVA film was observed by scanning electron microscope. The interaction between CaCl(2) and starch/PVA molecules was investigated by Fourier transform infrared spectroscopy. The influence of CaCl(2) on the crystalline, thermal and mechanical properties of starch/PVA films was studied by X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and tensile testing, respectively. The results indicated that CaCl(2) could interact with starch and PVA molecules and then effectively destroy the crystals of starch and PVA. Starch/PVA films plasticized with CaCl(2) became soft and ductile, with lower tensile strength and higher elongation at break compared with pure starch/PVA film. The water content of starch/PVA film would increase with the addition of CaCl(2). This is an important cause of the plasticization of CaCl(2) on starch/PVA film.  相似文献   

20.
Biochemistry of microbial polyvinyl alcohol degradation   总被引:1,自引:0,他引:1  
Effect of minor chemical structures such as 1,2-diol content, ethylene content, tacticity, a degree of polymerization, and a degree of saponification of the main chain on biodegradability of polyvinyl alcohol (PVA) is summarized. Most PVA-degraders are Gram-negative bacteria belonging to the Pseudomonads and Sphingomonads, but Gram-positive bacteria also have PVA-degrading abilities. Several examples show symbiotic degradation of PVA by different mechanisms. Penicillium sp. is the only reported eukaryotic degrader. A vinyl alcohol oligomer-utilizing fungus, Geotrichum fermentans WF9101, has also been reported. Lignolytic fungi have displayed non-specific degradation of PVA. Extensive published studies have established a two-step process for the biodegradation of PVA. Some bacteria excrete extracellular PVA oxidase to yield oxidized PVA, which is partly under spontaneous depolymerization and is further metabolized by the second step enzyme (hydrolase). On the other hand, PVA (whole and depolymerized to some extent) must be taken up into the periplasmic space of some Gram-negative bacteria, where PVA is oxidized by PVA dehydrogenase, coupled to a respiratory chain. The complete pva operon was identified in Sphingopyxis sp. 113P3. Anaerobic biodegradability of PVA has also been suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号