首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Eutrophication, often resulting from human activity, is a serious threat to aquatic communities. Theoretical analysis of this phenomenon, based on conceptual mathematical models, leads to controversial predictions known as Rosenzweig's paradox of enrichment. At the same time, field observations demonstrate that real plankton communities exhibit various mechanisms of self-regulation which can buffer negative effects of enrichment. In this paper, we study potential effects of zooplankton vertical migration on stability of plankton systems functioning. We consider an intrinsically unstable plankton model, which is characterized by an unlimited phytoplankton multiplication and population oscillations of increasing amplitude, and investigate whether vertical migrations of zooplankton can stabilize such a system at low plankton densities. By means of developing two different models accounting for different ecological situations, e.g. deep waters and shallow waters, we show that vertical migrations of zooplankton can result in stabilization of eutrophic plankton systems. Thus, we show that this mechanism, rarely taken into account in models of plankton dynamics, may be important for resolving the paradox of enrichment in plankton communities.  相似文献   

2.
We show that the paradox of enrichment can be theoretically resolved in a flexible predator–prey system in which the predator practices imperfect optimal foraging. A previous study showed that perfect optimal foraging can mitigate increases in the amplitude of population oscillations associated with enrichment, but it did not show a stabilization pattern. Our results show that imperfect optimal foraging can stabilize the system and resolve the paradox of enrichment under nonequilibrium dynamics. Furthermore, the degree of stabilization with enrichment was stronger when the imperfection of optimal foraging was larger.  相似文献   

3.
Michael Rosenzweig于1971年首次提出"富食悖论"这一概念:在简单的被捕食者-捕食者系统中,随着营养物质供应的增加,系统变得不再稳定,并产生大振幅波动,最终导致系统内的物种灭亡。然而,许多实验结果并不支持Rosenzweig的理论。综述"富食悖论"的定义、理论和实验研究,同时综述各种解释实际与理论之间矛盾的机制,最后探讨"富食悖论"的研究前景。  相似文献   

4.
Parasites are an integral part of virtually all food webs and species communities. Here we consider the invasion of a resident predator-prey system by an infectious disease with frequency-dependent transmission spreading within the predator population. We derive biologically plausible and insightful quantities (demographic and epizootiological reproduction numbers) that allow us to completely determine community composition. Successful disease invasion can have two contrary effects in driving its host population to extinction or in stabilizing predator-prey cycles. Our findings contradict predictions from previous models suggesting a destabilizing effect of parasites. We show that predator infection counteracts the paradox of enrichment. In turn, parasite removal from food webs can have catastrophic effects. We discuss the implications for biological control and resource management on more than one trophic level.  相似文献   

5.
In theory, enrichment of resource in a predator-prey model leads to destabilization of the system,thereby collapsing the trophic interaction,a phenomenon referred to as "the paradox of enrichment". After it was first pro posed by Rosenzweig (1971), a number of subsequent studies were carried out on this dilemma over many decades. In this article, we review these theoretical and experimental works and give a brief overview of the proposed solutions to the paradox. The mechanisms that have been discussed are modifications of simple predator -prey models in the presence of prey that is inedible, invulnerable, unpalatable and toxic. Another class of mechanisms includes an incorporation of a ratio-dependent functional form,inducible defence of prey and density-dependent mortality of the predator. Moreover, we find a third set of explanations based on complex population dynamics including chaos in space and time. We conclude that,although any one of the various mechanisms proposed so far might potentially prevent destabilization of the predator-prey dynamics following enrichment, in nature different mechanisms may combine to cause stability, even when a system is enriched. The exact mechanisms,which may differ among systems,need to be disentangled through extensive field studies and laboratory experiments coupled with realistic theoretical models.  相似文献   

6.
Insect host-parasitoid systems are often modeled using delay-differential equations, with a fixed development time for the juvenile host and parasitoid stages. We explore here the effects of distributed development on the stability of these systems, for a random parasitism model incorporating an invulnerable host stage, and a negative binomial model that displays generation cycles. A shifted gamma distribution was used to model the distribution of development time for both host and parasitoid stages, using the range of parameter values suggested by a literature survey. For the random parasitism model, the addition of biologically plausible levels of developmental variability could potentially double the area of stable parameter space beyond that generated by the invulnerable host stage. Only variability in host development time was stabilizing in this model. For the negative binomial model, development variability reduced the likelihood of generation cycles, and variability in host and parasitoid was equally stabilizing. One source of stability in these models may be aggregation of risk, because hosts with varying development times have different vulnerabilities. High levels of variability in development time occur in many insects and so could be a common source of stability in host-parasitoid systems.  相似文献   

7.
Nutrient cycling is fundamental to ecosystem functioning. Despite recent major advances in the understanding of complex food web dynamics, food web models have so far generally ignored nutrient cycling. However, nutrient cycling is expected to strongly impact food web stability and functioning. To make up for this gap, we built an allometric and size structured food web model including nutrient cycling. By releasing mineral nutrients, recycling increases the availability of limiting resources for primary producers and links each trophic level to the bottom of food webs. We found that nutrient cycling can provide a significant part of the total nutrient supply of the food web, leading to a strong enrichment effect that promotes species persistence in nutrient poor ecosystems but leads to a paradox of enrichment at high nutrient inputs. The presence of recycling loops linking each trophic level to the basal resources weakly affects species biomass temporal variability in the food web. Recycling loops tend to slightly dampen the destabilising effect of nutrient enrichment on consumer temporal variability while they have opposite effects for primary producers. By considering nutrient cycling, this new model improves our understanding of the response of food webs to nutrient availability and opens perspectives to better link studies on food web dynamics and ecosystem functioning.  相似文献   

8.
Metapopulation theory for the evolution of specialisation is virtually absent. In this article, therefore, we study a metapopulation model for consumers with a fitness trade-off between two habitats. We focus on effects of habitat abundance, dispersal rate and trade-off strength on the evolution of specialisation under two types of trade-off. Adaptation affects either the intrinsic growth rates r or the carrying capacities K. Depending on dispersal rate and trade-off strength, evolution can result in one generalist, one specialist or two specialist types. Higher dispersal rate and a weaker trade-off favour the evolution of a generalist, for both trade-off structures. However, we also find differences between the two trade-off structures. Our results are qualitatively similar to analyses of two-patch models, suggesting that insights from such simpler models can be extrapolated to metapopulation models. Additional effects, however, occur because in classical metapopulations patch lifetime depends on extinction rate. Counterintuitively, this favours the evolution of specialisation when the trade-off affects r.  相似文献   

9.
We employ the general model of predator-prey systems incorporating age structure in the predator, developed in the previous paper, to study the role of functional response in stability and the paradox of enrichment. The destabilizing effect of age structure leads to both qualitatively and quantitatively new results, including a lower bound to prey density for a stable equilibrium, a feature not present in models without age structure.  相似文献   

10.
The crocodilia have multiple interesting characteristics that affect their population dynamics. They are among several reptile species which exhibit temperature-dependent sex determination (TSD) in which the temperature of egg incubation determines the sex of the hatchlings. Their life parameters, specifically birth and death rates, exhibit strong age-dependence. We develop delay-differential equation (DDE) models describing the evolution of a crocodilian population. In using the delay formulation, we are able to account for both the TSD and the age-dependence of the life parameters while maintaining some analytical tractability. In our single-delay model we also find an equilibrium point and prove its local asymptotic stability. We numerically solve the different models and investigate the effects of multiple delays on the age structure of the population as well as the sex ratio of the population. For all models we obtain very strong agreement with the age structure of crocodilian population data as reported in Smith and Webb (Aust. Wild. Res. 12, 541-554, 1985). We also obtain reasonable values for the sex ratio of the simulated population.  相似文献   

11.
The paradox of enrichment in an adaptive world   总被引:1,自引:0,他引:1  
Paradoxically, enrichment can destabilize a predator-prey food web. While adaptive dynamics can greatly influence the stability of interaction systems, few theoretical studies have examined the effect of the adaptive dynamics of interaction-related traits on the possibility of resolution of the paradox of enrichment. We consider the evolution of attack and defence traits of a predator and two prey species in a one predator-two prey system in which the predator practises optimal diet use. The results showed that optimal foraging alone cannot eliminate a pattern of destabilization with enrichment, but trait evolution of the predator or prey can change the pattern to one of stabilization, implying a possible resolution of the paradox of enrichment. Furthermore, trait evolution in all species can broaden the parameter range of stabilization. Importantly, rapid evolution can stabilize this system, but weaken its stability in the face of enrichment.  相似文献   

12.
An existing arthropod predator-prey model incorporating age structure in the carnivore through the use of the von Foerster equation is extended to include the effects of intraspecific carnivore interaction and passive diffusion or migration. A linear stability analysis of the community equilibrium point of that differential-integral equation system is performed and the resulting secular equation analyzed by the method of D-partitions. These stability results are then compared to those obtained by employing an analogous differential equation model without age structure, in particular as they relate to the so-called paradox of enrichment. In the absence of passive diffusion, it is shown that, unlike for a differential equation model, the paradox of enrichment can occur even with a carnivore which exhibits intraspecific competition. This destabilizing effect of age structure is seen to occur most dramatically when interspecific interactions are large, while the effect of passive diffusion is to offset that tendency and restabilize the system. These predictions are in accordance with relevant experimental evidence involving mites.  相似文献   

13.
We consider the stability properties of the positive equilibrium of a stochastic model for bacteriophage infection with discrete time delay. Conditions for mean-square stability of the trivial solution of the linearized system around the equilibrium are given by the construction of suitable Lyapunov functionals. The numerical simulations of the strong solutions of the arising stochastic delay differential system suggest that, even for the original non-linear model, the longer the incubation time the more the phage and bacteria populations can coexist on a stable equilibrium in a noisy environment for very long time.  相似文献   

14.
The stability of predator-prey systems subject to the Allee effects   总被引:4,自引:0,他引:4  
In recent years, many theoreticians and experimentalists have concentrated on the processes that affect the stability of predator-prey systems. But few papers have addressed the Allee effect with focus on the their stability. In this paper, we select two classical models describing predator-prey systems and introduce the Allee effects into the dynamics of both the predator and prey populations in these models, respectively. By combining mathematical analysis with numerical simulation, we have shown that the Allee effect may be a destabilizing force in predator-prey systems: the equilibrium point of the system could be changed from stable to unstable or otherwise, the system, even when it is stable, will take much longer time to reach the stable state. We also conclude that the equilibrium of the prey population will be enlarged due to the Allee effect of the predator, but the Allee effects of the prey may decrease the equilibrium value of the predator, or that of both the predator and prey. It should also be pointed out that the impact of the Allee effects of predator and prey due to different mechanisms on different predator-prey systems could also vary.  相似文献   

15.
In Rosenzweig-MacArthur models of predator-prey dynamics, Allee effects in prey usually destabilize interior equilibria and can suppress or enhance limit cycles typical of the paradox of enrichment. We re-evaluate these conclusions through a complete classification of a wide range of Allee effects in prey and predator's functional response shapes. We show that abrupt and deterministic system collapses not preceded by fluctuating predator-prey dynamics occur for sufficiently steep type III functional responses and strong Allee effects (with unstable lower equilibrium in prey dynamics). This phenomenon arises as type III functional responses greatly reduce cyclic dynamics and strong Allee effects promote deterministic collapses. These collapses occur with decreasing predator mortality and/or increasing susceptibility of the prey to fall below the threshold Allee density (e.g. due to increased carrying capacity or the Allee threshold itself). On the other hand, weak Allee effects (without unstable equilibrium in prey dynamics) enlarge the range of carrying capacities for which the cycles occur if predators exhibit decelerating functional responses. We discuss the results in the light of conservation strategies, eradication of alien species, and successful introduction of biocontrol agents.  相似文献   

16.
We review the literature on spatial host-parasitoid and predator-prey models. Dispersal on its own is not stabilizing and can destabilize a stable local equilibrium. We identify three mechanisms whereby limited dispersal of hosts and parasitoids combined with other features, such as spatial and temporal heterogeneity, can promote increased persistence and stability. The first mechanisms, "statistical stabilization", is simply the statistical effect that summing a number of out-of-phase population trajectories results in a relatively constant total population density. The second mechanism involves decoupling of immigration from local density, such that limited dispersal between asynchronous patches results in an effect that mimics density-dependence at the local patch level. The third mechanism involves altering spatially averaged parameter values resulting from spatial heterogeneity in density combined with non-linear responses to density. Persistence in spatially explicit models with local dispersal frequently associated with self-organized spatial patterning.  相似文献   

17.
Summary A general model of arthropod predator-prey systems incorporating age structure in the predator is employed to study the role of functional and numerical responses on stability and the paradox of enrichment. The destabilizing effect of age structure leads to both qualitatively and quantitatively new results for an environment which has an infinite prey carrying capacity, including a lower bound to prey density for a stable equilibrium, a feature not present in models without age structure. When applied to an environment with finite prey carrying capacity, the effect of age structure is to reinforce the arguments implicit to the paradox of enrichment originally developed for traditional models lacking age structure.  相似文献   

18.
Observed phenotypic responses to selection in the wild often differ from predictions based on measurements of selection and genetic variance. An overlooked hypothesis to explain this paradox of stasis is that a skewed phenotypic distribution affects natural selection and evolution. We show through mathematical modeling that, when a trait selected for an optimum phenotype has a skewed distribution, directional selection is detected even at evolutionary equilibrium, where it causes no change in the mean phenotype. When environmental effects are skewed, Lande and Arnold's (1983) directional gradient is in the direction opposite to the skew. In contrast, skewed breeding values can displace the mean phenotype from the optimum, causing directional selection in the direction of the skew. These effects can be partitioned out using alternative selection estimates based on average derivatives of individual relative fitness, or additive genetic covariances between relative fitness and trait (Robertson–Price identity). We assess the validity of these predictions using simulations of selection estimation under moderate sample sizes. Ecologically relevant traits may commonly have skewed distributions, as we here exemplify with avian laying date — repeatedly described as more evolutionarily stable than expected — so this skewness should be accounted for when investigating evolutionary dynamics in the wild.  相似文献   

19.
Ratio-dependent predator-prey models are increasingly favored by both the theoretical and experimental ecologists as a more suitable alternative to describe predator-prey interactions when the predators hunt seriously. In this article, the classical Bazykin’s model is modified with ratio-dependent functional response. Stability and bifurcation situations of the system are observed. Since the ratio-dependent model always has difficult dynamics in the vicinity of the origin, the analytical behavior of the system near origin is studied completely. It is found that paradox of enrichment can happen to this system under certain parameter values, although the functional response is ratio-dependent. The parametric space for Turing spatial structure is determined. We also conclude that competition among the predator population might be beneficial for predator species under certain circumstances. Finally, ecological interpretations of our results are presented in the discussion section.  相似文献   

20.
Organisms prefer to make their own choices. However, emerging research from behavioral decision making sciences has demonstrated that there are boundaries to the preference for choice. Specifically, many decision makers find an extensive array of choice options to be aversive, often leading to negative emotional states and poor behavioral outcomes. This study examined the degree to which human participants discounted hypothetical rewards that were (a) delayed, (b) probabilistic, and (c) chosen from a large array of options. The present results suggest that the "paradox of choice" effect may be explained within a discounting model for individual patterns of decision making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号