首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In an approach toward artificial ribonucleases, novel RNA cleaving systems were constructed that contained two terpyridine.Cu(II) residues. The first antisense system used tandem Cu(II) complex--2'-O-methyloligonucleotide 5'- and 3'-conjugates to cleave an RNA substrate. The second system, which will be described in a future paper, contained two contiguous Cu(II) complex residues at an internal site of a 2'-O-methyloligonucleotide. We found that the first system rapidly cleaved RNA with high site-specificity. Based on these results, we expect the second system to also show efficient RNA cleavage.  相似文献   

3.
In order to construct an antisense 2'-O-methyloligonucleotide with an internal terpyridine-Cu(II) complex, a novel synthon was synthesized. This synthon was a 2'-deoxy-uridine-3'-phosphoramidite derivative with a terpyridine group at the 5'-O and a dimethoxytritylated hydroxypropyl group at the C-5. The antisense agent cleaved the RNA site-specifically and in a moderate yield.  相似文献   

4.
Abstract

RNA cleaving molecules were synthesized by conjugating components of ribonucleases A and T1 catalytic centers (imidazole, aliphatic amino and/or carboxy residues) to intercalating and cationic structures. The artificial ribonucleases were shown cleave RNA at Py-Pu sites in single-stranded regions.  相似文献   

5.
A series of novel 1,2,3-triazole nucleosides linked to DNA nucleobases were prepared via copper(I)-catalyzed 1,3-dipolar cycloaddition of N-9 propargylpurines or N-1 propargylpyrimidines with the tolouyl protected 1-azido-2-deoxyribofuranose 2 followed by treatment with NaOMe/MeOH or aq NH3. The antiviral activity of such compounds against selected RNA viruses is reported. The strongly fluorescent 1,2,3-triazole compounds 16 and 17 were synthesized from propargylated uracil 1a and propargylated adenine 1c with coumarin azide 15, and the fluorescence properties were studied. The nucleosides 4 and 6 were incorporated into DNA using the phosphoramidite building blocks and employed in solid-phase synthesis. Melting experiments demonstrated that such 1,2,3-triazole nucleosides have a negative impact on the duplex stability when they are placed opposite to the canonical bases as well as abasic sites. The nucleobases attached to the triazole ring cannot involve in the base pair formation with the opposite bases because of the structural variations induced by the triazole ring. The stacking of such nucleosides when positioned at the end of oligonucleotides retains the stability of DNA duplexes. The duplex structures were studied by molecular modelling which support the results of melting experiments.  相似文献   

6.
The stereochemical course of the first step of pre-mRNA splicing.   总被引:4,自引:0,他引:4       下载免费PDF全文
We have determined the effects on splicing of sulfur substitution of the non-bridging oxygens in the phosphodiester bond at the 5' splice site of a pre-mRNA intron. Pre-mRNAs containing stereochemically pure Rp and Sp phosphorothioate isomers were produced by ligation of a chemically synthesized modified RNA oligonucleotide to enzymatically synthesized RAs. When these modified pre-mRNA substrates were tested for in vitro splicing activity in a HeLa cell nuclear extract system, the RNA with the Rp diastereomeric phosphorothioate was not spliced while the Sp diastereomeric RNA spliced readily. The sulfur-containing branched trinucleotide was purified from the splicing reaction of the Sp RNA and analyzed by cleavage with a stereospecific nuclease. The results showed that the Sp phosphorothioate was inverted during the splicing reaction to the Rp configuration; a finding previously obtained for a Group I self-splicing RNA. This inversion of configuration is consistent with a transesterification mechanism for pre-mRNA splicing. The lack of splicing of the Rp modified RNA also suggests that the pro-Rp oxygen at the 5' splice site is involved in a critical chemical contact in the splicing mechanism. Additionally, we have found that the HeLa cell RNA debranching enzyme is inactive on branches containing an Rp phosphorothioate.  相似文献   

7.
The interactions between the intercalating agent and the three types of abasic sites: abasic frameshift, apurinic and apyrimidinic, were investigated. 9-amino-6-chloro-2-methoxyacridine (ACMA), whose spectroscopic properties are strongly perturbed by the environment, was selected as the intercalating agent. The optically pure threoninol derived from the reduction of L-threonine was used as an artificial abasic site mimicking the ring-opened natural ribose. In order to secure the selective intercalation to the adjacent abasic site, ACMA and the abasic site were connected through a tri- pentamethylene linker. These modified oligonucleotides covalently linked to an ACMA molecule at the internucleotide site having the same base-sequence were synthesized using the acridine-phosphoramidites. Although all the modified oligonucleotides lack a nucleobase at the intervening position, these double strands showed high thermal stability. The pentamethylene linker and the apyrimidinic systems were especially stabilized. At the same time, sharpness of the absorption spectra and a new fluorescent band of the acridine, due to the fixation of the environment around ACMA, were observed. Therefore, it is concluded that the acridine binds preferentially to the apyrimidinic site rather than the frameshift abasic site and that the surroundings of the acridine are strictly fixed at the microenvironmental level.  相似文献   

8.
Abstract

2′-Deoxy- and 2′-O-methyl-5′-O-terpyridyl derivatives of adenosine and cytidine were synthesized and used to construct 5′-end-modified oligonucleotides. These antisense agents complexed with Cu(II) exclusively cleaved a complementary RNA oligomer at the site opposite the terpyridine-nucleoside residue. We also found that the terpyridine·Cu(II) moiety stabilizes 2′-O-methyl RNA duplex. These suggest that after RNA hybridization, the terpyridine moiety is close to the RNA strand, presumably in an end capping manner.  相似文献   

9.
The syntheses and RNA cleavage efficiencies of a new series of oligonucleotide conjugates of Cu(II)-serinol-terpyridine and 1,3-propanediol are reported. These reagents, termed ribozyme mimics, were designed such that they would yield multiple unpaired RNA residues directly opposite the site of the RNA cleavage catalyst upon ribozyme mimic-RNA duplex formation. This design effect was implemented using the 1,3-propanediol linker 3, which mimics the three-carbon spacing between the 5'- and 3'-hydroxyls of a natural nucleotide. Incorporation of one or more of these 1,3-propanediol linkers at positions directly adjacent to the serinol-terpyridine modification in the ribozyme mimic DNA strand resulted in cleavage at multiple phosphates in a complementary 31-mer RNA target sequence. The linkers effectively created artificial mismatches in the RNA-DNA duplexes, rendering the opposing RNA residues much more susceptible to cleavage via the transesterification/hydrolysis pathway. The RNA cleavage products produced by the various mimics correlated directly with the number and locations of the linkers in their DNA strands, and the most active ribozyme mimic in the series exhibited multiple turnover in the presence of excess 31-mer RNA target.  相似文献   

10.
11.
12.
A novel series of metal-free artificial ribonucleases (aRNases) was designed, synthesized and assessed in terms of ribonuclease activity and ability to inactivate influenza virus WSN/A33/H1N1 in vitro. The compounds were built of two short peptide fragments, which include Lys, Ser, Arg, Glu and imidazole residues in various combinations, connected by linkers of different hydrophobicity (1,12-diaminododecane or 4,9-dioxa-1,12-diaminododecane). These compounds efficiently cleaved different RNA substrates under physiological conditions at rates three to five times higher than that of artificial ribonucleases described earlier and displayed RNase A-like cleavage specificity. aRNases with the hydrophobic 1,12-diaminododecane linker displayed ribonuclease activity 3–40 times higher than aRNases with the 4,9-dioxa-1,12-diaminododecane linker. The assumed mechanism of RNA cleavage was typical for natural ribonucleases, that is, general acid-base catalysis via the formation of acid/base pairs by functional groups of amino acids present in the aRNases; the pH profile of cleavage confirmed this mechanism. The most active aRNases under study exhibited high antiviral activity and entirely inactivated influenza virus A/WSN/33/(H1N1) after a short incubation period of viral suspension under physiological conditions.  相似文献   

13.
Arabinonucleic acid (ANA), the 2'-epimer of RNA, was synthesized from arabinonucleoside building blocks by conventional solid-phase phosphoramidite synthesis. In addition, the biochemical and physicochemical properties of ANA strands of mixed base composition were evaluated for the first time. ANA exhibit certain characteristics desirable for use as antisense agents. They form duplexes with complementary RNA, direct RNase H degradation of target RNA molecules, and display resistance to 3'-exonucleases. Since RNA does not elicit RNase H activity, our findings establish that the stereochemistry at C2' (ANA versus RNA) is a key determinant in the activation of the enzyme RNase H. Inversion of stereochemistry at C2' is most likely accompanied by a conformational change in the furanose sugar pucker from C3'-endo (RNA) to C2'-endo ("DNA-like") pucker (ANA) [Noronha and Damha (1998) Nucleic Acids Res. 26, 2665-2671; Venkateswarlu and Ferguson (1999) J. Am. Chem. Soc. 121, 5609-5610]. This produces ANA/RNA hybrids whose CD spectra (i.e., helical conformation) are more similar to the native DNA/RNA substrates than to those of the pure RNA/RNA duplex. These features, combined with the fact that ara-2'OH groups project into the major groove of the helix (where they should not interfere with RNase H binding), help to explain the RNase H activity of ANA/RNA hybrids.  相似文献   

14.
Phosphodiester bonds in RNA situated between similar nucleotides but in different sequences (context) were cleaved under the action of artificial and natural ribonucleases with different speeds, and the reason for this phenomenon has not yet been fully revealed. In this study, the influence of one-nucleotide substitution on the sensitivity to cleavage of the phosphodiester bonds in linear and structured RNA with homologous sequences is studied for the first time. It is indicated that the introduction of one-nucleotide substitution in the RNA sequence significantly (up to 10 times) changes the speed of the cleavage of the bonds that are separated from the substitution point not only by 1–3, but also 6–8 nucleotides, by artificial ribonucleases. The observed regularities may be explained by the fact that the introduction of a one-nucleotide substitution significantly changes the stacking interactions and the net of hydrogen bonds in the RNA molecule. The applied value of this study consists of the ability of using low-molecular artificial ribonucleases with the aim of choosing the region of the binding of the oligonucleotide in the construction of a conjugate for the site-directed cutting of RNA, because the choice of a phosphodiester bond (motif) easily subjected to cleavage significantly determines the efficacy of artificial ribonucleases of directed action.  相似文献   

15.
J Hall  D Hüsken    R Hner 《Nucleic acids research》1996,24(18):3522-3526
Lanthanide complexes covalently attached to oligonucleotides have been shown to cleave RNA in a sequence-specific manner. Efficient cleavage, however, is at present limited to single-stranded RNA regions, as RNA in a duplex is considerably more resistant to strand scission. To overcome this limitation, we have designed and synthesised artificial nucleases comprising lanthanide complexes covalently linked to oligodeoxyribonucleotides which cleave a partially complementary RNA at a bulged site, in the duplex region. Strand scission occurs at or near the bulge. Cleavage of the RNA target by the metal complex can be addressed via the major or the minor groove. In an example of a competitive situation, where the cleavage moiety has access to both a bulge and a single-strand region, transesterification at the bulge is favoured. Such artificial ribonucleases may find application as antisense agents and as tools in molecular biology. In addition, the results may have importance for the design of artificial ribonucleases which are able to act with catalytic turnover.  相似文献   

16.
The chemical stability of abasic RNA compared to abasic DNA   总被引:1,自引:1,他引:0  
We describe the synthesis of an abasic RNA phosphoramidite carrying a photocleavable 1-(2-nitrophenyl)ethyl (NPE) group at the anomeric center and a triisopropylsilyloxymethyl (TOM) group as 2′-O-protecting group together with the analogous DNA and the 2′-OMe RNA abasic building blocks. These units were incorporated into RNA-, 2′-OMe-RNA- and DNA for the purpose of studying their chemical stabilities towards backbone cleavage in a comparative way. Stability measurements were performed under basic conditions (0.1 M NaOH) and in the presence of aniline (pH 4.6) at 37°C. The kinetics and mechanisms of strand cleavage were followed by High pressure liquid chromotography and ESI-MS. Under basic conditions, strand cleavage at abasic RNA sites can occur via β,δ-elimination and 2′,3′-cyclophosphate formation. We found that β,δ-elimination was 154-fold slower compared to the same mechanism in abasic DNA. Overall strand cleavage of abasic RNA (including cyclophosphate formation) was still 16.8 times slower compared to abasic DNA. In the presence of aniline at pH 4.6, where only β,δ-elimination contributes to strand cleavage, a 15-fold reduced cleavage rate at the RNA abasic site was observed. Thus abasic RNA is significantly more stable than abasic DNA. The higher stability of abasic RNA is discussed in the context of its potential biological role.  相似文献   

17.
Decanucleotide (Ap)6GpTpUpC and undecanucleotide GpApUpCpCp (Up)5U have been synthesised. They constitute 5'- and 3'-parts of a 21-mer which imitates T psi C-arm of yeast tRNA(Val1) and is a potential substrate for m1A-methylases and pseudouridine synthetase. The oligonucleotide blocks, synthesised enzymatically by means of ribonucleases of various substrate specificity and polynucleotide phosphorylases (TpUpC, ApUpCpC, pGpTpUpC, GpApUpCpC) or obtained by hydrolysis of poly(U) and poly(A) with Serratia marcescens endonuclease (hexauridilate and hexaadenilate), were joined by T4 RNA ligase.  相似文献   

18.
Based on our recent studies of RNA cleavage by oligonucleotide–terpyridine·Cu(II) complex 5′- and/or 3′-conjugates, we designed 2′-O-methyloligonucleotides with two terpyridine-attached nucleosides at contiguous internal sites. To connect the 2′-terpyridine-modified uridine residue at the 5′-side to the 5′-O-terpyridyl nucleoside residue at the 3′-side, a dimethoxytrityl derivative of 5-hydroxypropyl-5′-O-terpyridyl-2′-deoxyuridine-3′-phosphoramidite was newly synthesized. Using this unit, we constructed two terpyridine conjugates, with either an unusual phophodiester bond or the bond extended by a propanediol(s)-containing linker. Cleavage reactions of the target RNA oligomer, under the conditions of conjugate excess in the presence of Cu(II), indicated that the conjugates precisely cleaved the RNA at the predetermined site and that one propanediol-containing linker was the most appropriate for inducing high cleavage activity. Furthermore, a comparison of the activity of the propanediol agent with those of the control conjugates with one complex confirmed that the two complexes are required for efficient RNA cleavage. The reaction of the novel cleaver revealed a bell-shaped pH–rate profile with a maximum at pH ~7.5, which is a result of the cooperative action of the complexes. In addition, we demonstrated that the agent catalytically cleaves an excess of the RNA, with the kinetic parameter kcat/Km = 0.118 nM–1 h–1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号