首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naomi Biezunski 《Chromosoma》1981,84(1):111-129
The size and distribution of renatured inverted repeats (palindromes) in Mus musculus DNA were examined by electron microscopy (EM). The majority (85%) of palindromes were found to be clustered in about one half of the DNA strands. The rest of the DNA strands were seen with a solitary looped structure. — The unlooped palindromes constituted 53% of all palindromes and were always clustered. There was a significant reduction in the number of unlooped palindromes in comparison to D. melanogaster DNA (Biezunski, 1981) and as a result the palindrome clusters were smaller and contained 2–8 palindromes [4–16 inverted repeats (ir)] per DNA strand. The looped palindromes had a wide and regular distribution with spacing lengths similar to those found in D. melanogaster DNA, and showed some periodicity. The average spacing between centers of all palindromes (inside a cluster) was 4.325 kb, and between centers of looped palindromes 8.544 kb. — The lengths of the ir of unlooped and looped palindromes were grouped (similar to D. melanogaster DNA) in one size-class with a range of 30–240 bp and an average length of 130 bp. Longer ir were also observed and the average length of ir in unlooped palindromes was 186 bp, in looped 588 bp, and the total average length was 375 bp. — It was calculated that there are about 224,000–320,000 palindromes (ir pairs) in the mouse genome, with the spacing between centers of all palindromes about 13-9 kb in length. — In high molecular weight mouse DNA, complex looped structures composed of rows of 5–8 looped palindromes one on top the other, formed by renaturation of multiple ir, were observed. It is suggested, that clustered repetitive sequences, in direct and inverted orientation, might be of one family and homologous to one another, and be able to reassociate, in vitro and in vivo, into structures of different forms, which could function as binding sites for various regulatory proteins during mouse development.  相似文献   

2.
The pattern of DNA sequence organization in the genome of Cycas revoluta was analyzed by DNA/DNA reassociation. Reassociation of 400 base pair (bp) fragments to various C0t values indicates the presence of at least four kinetic classes: the foldback plus very highly repetitive sequences (15%), the fast repeats (24%), the slow repeats (44%), and the single copy (17%). The latter component reassociates with a rate constant 1×10–4 M–1S–1 corresponding to a complexity of 1.6× 106 kb per haploid genome. A haploid C. revoluta nucleus contains approximately 10.3 pg DNA. The single-copy sequences account for about 28% of the DNA, but only 17% reassociate with single-copy kinetics because of interspersion with repetitive sequences. — The interspersion of repetitive and single-copy sequences was examined by reassociation of DNA fragments of varying length to C0t values of 70 and 500. A major (65%) and homogeneous class of single-copy sequences averaging 1,100 bp in length is interspersed in a short period pattern with repeated sequences. A minor (35%) heterogeneous single-copy component is interspersed in a long-period pattern. The majority of repetitive sequences have a length distribution of 100–350 bp with subclasses averaging 150 and 300 bp in length. Repeat sequences with a wide range in sizes exceeding 2 kilobase pair (kb) are also present in this genome. — The size and distribution of inverted repeat (ir) sequences in the DNA of C. revoluta were studied by electron microscopy. It is estimated that there are approximately 4 × 106 ir pairs (one per 2.33 kb) that form almost equal numbers of looped and unlooped palindromes. This high value is 2.5 times that found in wheat DNA. These palindromes are in general randomly distributed in the genome with an average interpalindrome distance of 1.6 kb. The majority (about 85%) of ir sequences of both types of palindromes belong to a main-size class, with an average length of 210 bp in the unlooped and and 163 bp in the looped type. These values are comparable to those reported for some other plant and animal genomes. Distribution of length of single stranded loops showed a main-size class (75%) with an average length of 220 bp.  相似文献   

3.
The inverted repeated sequences of the chromatin-eliminating nematode Ascaris lumbricoides var. suum have been examined by electron microscopy and by hydroxyapatite chromatography, both in the germ-line and in the somatic DNA. 38% of the inverted repeats of the germ-line DNA analysed in the electron microscope have a single-stranded loop, in comparison to about 50% of looped structures in the somatic DNA. The loops are on average 2.3 X 10(3) base pairs (bp) long. The rest of the foldback DNA consists of simple hairpins. The average length of looped and unlooped inverted repeats is of the order of 300-400 bp in the germ-line and in the somatic DNA. The content of S1-resistant foldback duplexes isolated by hydroxyapatite chromatography amounts to 1.3% in spermatids, with an average length of 350 bp, and to 1.1% in intestinal or larval cell nuclei, with a length of about 320 bp. We estimate by two different methods that there exist approximately 12500 inverted repeats per haploid germ-line genome and approximately 8000 in the haploid somatic genome. A statistical analysis of the data indicates that the great majority of the foldback sequences are randomly distributed in the Ascaris genome, with a spacing of about (40-80) X 10(3) bp, both in the germ-line and in the somatic DNA.  相似文献   

4.
The properties of inverted repeated sequences in wheat nuclear DNA have been studied by HAP(1) chromatography, nuclease S1 digestion and electron microscopy. Inverted repeated sequences comprise 1.7% of wheat genome. The HAP studies show that the amount of "foldback HAP bound DNA" depends on DNA length. Inverted repeats appear to be clustered with an average intercluster distance of 25 kb. It is estimated that there are approximately 3 x 10(6) inverted repeats per haploid wheat genome. The sequences around inverted repeats involve all families of repetition frequencies. Inverted repeats are observed as hairpins in electron microscopy. 20% of hairpins are terminated by a single-stranded spacer ranging from 0.3 to 1.5 kb in length. Duplex regions of the inverted repeats range from 0.1 to 0.45 kb with number average values of 0.24 kb and 0.18 kb for unlooped and looped hairpin respectively. Thermal denaturations and nuclease S1 digestions have revealed a length of about 100 bases for duplex regions. The methods used to study inverted repeated sequences are compared and discussed.  相似文献   

5.
DNA looping plays a key role in many fundamental biological processes, including gene regulation, recombination, and chromosomal organization. The looping of DNA is often mediated by proteins whose structural features and physical interactions can alter the length scale at which the looping occurs. Looping and unlooping processes are controlled by thermodynamic contributions associated with mechanical deformation of the DNA strand and entropy arising from thermal fluctuations of the conformation. To determine how these confounding effects influence DNA looping and unlooping kinetics, we present a theoretical model that incorporates the role of the protein interactions, DNA mechanics, and conformational entropy. We show that for shorter DNA strands the interaction distance affects the transition state, resulting in a complex relationship between the looped and unlooped state lifetimes and the physical properties of the looped DNA. We explore the range of behaviors that arise with varying interaction distance and DNA length. These results demonstrate how DNA deformation and entropy dictate the scaling of the looping and unlooping kinetics versus the J-factor, establishing the connection between kinetic and equilibrium behaviors. Our results show how the twist-and-bend elasticity of the DNA chain modulates the kinetics and how the influence of the interaction distance fades away at intermediate to longer chain lengths, in agreement with previous scaling predictions.  相似文献   

6.
7.
Palindromy and the Location of Deletion Endpoints in Escherichia Coli   总被引:13,自引:3,他引:10  
K. Weston-Hafer  D. E. Berg 《Genetics》1989,121(4):651-658
The contributions of direct and inverted repeats to deletion formation were studied by characterizing Ampr revertants of plasmids with a series of insertion mutations at a specific site in the pBR322 ampicillin resistance (amp) gene. The inserts at this site are palindromic, variable in length, and bracketed by 9- or 10-bp direct repeats of amp sequence. There is an additional direct repeat composed of 4 bp within the insert and 4 bp of adjoining amp sequence. DNA sequencing and colony hybridization of Ampr revertants showed that they contained either the parental amp sequence, implying deletion endpoints in the flanking 9- or 10-bp repeats, or a specific 1-bp substitution, implying endpoints in the 4-bp repeats. Although generally direct repeats seem to be used as deletion endpoints with a frequency proportional to their lengths, we found that with uninterrupted palindromes longer than 32 bp, the majority of deletions ended in the 4 bp, not the 9- or 10-bp repeats. This preferential use of the shorter direct repeats associated with palindromes is interpreted according to a DNA synthesis-error model in which hairpin structures formed by intrastrand pairing foster the slippage of nascent strands during DNA synthesis.  相似文献   

8.
The structure of a DNA intermediate associated with termination of chromosome replication in Bacillus subtilis and derived from a unique BamHI 24.8 X 10(3) base-pair (bp) region of the chromosome has been investigated. The intermediate has properties expected for a forked structure. Gel electrophoresis followed by Southern transfer and hybridization to cloned DNA has shown it to comprise single strands of 15.4 X 10(3) bp and 24.8 X 10(3) bp, in approximately equimolar amounts. After purification away from the bulk of chromosomal DNA, electron microscopy of the intermediate established that 15% of the DNA was present as branched molecules and a significant proportion (11 of 31) of these contained two arms of matching length. The average dimensions (best estimates) of this unique class of Y-shaped molecule were 9.5(+/- 0.3) X 10(3), 15.1(+/- 0.4) X 10(3) and 24.6 24.6(+/- 0.6) X 10(3) bp for the stem, arms and end-to-end length, respectively. These values are consistent with the single strand composition of the intermediate as found. Furthermore, hybridization of the single strands to DNA from known locations within the BamHI 24.8 X 10(3) bp region has established the orientation of the forked intermediate relative to the genetic map. The intermediate presumably reflects the immobilization of the clockwise replication fork within the 24.8 X 10(3) bp region, at a location approximately 15.4 X 10(3) bp from the right end.  相似文献   

9.
The Adenovirus DNA binding protein (DBP) imposes a regular, rigid and extended conformation on single stranded DNA (ssDNA) and removes secondary structure. Here we show that DBP promotes renaturation of complementary single DNA strands. Enhancement of intermolecular renaturation is sequence independent, can be observed over a broad range of ionic conditions and occurs only when the DNA strands are completely covered with DBP. When one strand of DNA is covered with DBP and its complementary strand with T4 gene 32 protein, renaturation is still enhanced compared to protein-free DNA, indicating that the structures of both protein-DNA complexes are compatible for renaturation. In contrast to promoting intermolecular renaturation, DBP strongly inhibits intramolecular renaturation required for the formation of a panhandle from an ssDNA molecule with an inverted terminal repeat. We explain this by the rigidity of an ssDNA-DBP complex. These results will be discussed in view of the crystal structure of DBP that has recently been determined.  相似文献   

10.
Initiation of transposition requires formation of a synaptic complex between both transposon ends and the transposase (Tpase), the enzyme which catalyses DNA cleavage and strand transfer and which ensures transposon mobility. We have used a single-molecule approach, tethered particle motion (TPM), to observe binding of a Tpase derivative, OrfAB[149], amputated for its C-terminal catalytic domain, to DNA molecules carrying one or two IS911 ends. Binding of OrfAB[149] to a single IS911 end provoked a small shortening of the DNA. This is consistent with a DNA bend introduced by protein binding to a single end. This was confirmed using a classic gel retardation assay with circularly permuted DNA substrates. When two ends were present on the tethered DNA in their natural, inverted, configuration, Tpase not only provoked the short reduction in length but also generated species with greatly reduce effective length consistent with DNA looping between the ends. Once formed, this 'looped' species was very stable. Kinetic analysis in real-time suggested that passage from the bound unlooped to the looped state could involve another species of intermediate length in which both transposon ends are bound. DNA carrying directly repeated ends also gave rise to the looped species but the level of the intermediate species was significantly enhanced. Its accumulation could reflect a less favourable synapse formation from this configuration than for the inverted ends. This is compatible with a model in which Tpase binds separately to and bends each end (the intermediate species) and protein-protein interactions then lead to synapsis (the looped species).  相似文献   

11.
12.
Homologous recombination, the exchange of strands between different DNA molecules, is essential for proper maintenance and accurate duplication of the genome. Using magnetic tweezers, we monitor RecA-driven homologous recombination of individual DNA molecules in real time. We resolve several key aspects of DNA structure during and after strand exchange. Changes in DNA length and twist yield helical parameters for the protein-bound three-stranded structure in conditions in which ATP was not hydrolyzed. When strand exchange was completed under ATP hydrolysis conditions that allow protein dissociation, a "D wrap" structure formed. During homologous recombination, strand invasion at one end and RecA dissociation at the other end occurred at the same rate, and our single-molecule analysis indicated that a region of only about 80 bp is actively involved in the synapsis at any time during the entire reaction involving a long ( approximately 1 kb) region of homology.  相似文献   

13.
The nascent DNA synthesized after UV irradiation contained discontinuity, i.e., daughter-strand gaps. The sizes of these gaps produced in the leading and lagging strands of UV-irradiated Escherichia coli cells were determined by using strand-specific DNA probes. The DNA isolated from irradiated uvrA delta(lac-pro) cells was hybridized with the 32P-labeled single-stranded DNA probes. After digestion with S1 nuclease, the sizes of the bound radioactive DNA fragments were determined by electrophoresis in an alkaline agarose gel. It was found that the average size of gaps produced in the leading strand was about 0.12 kb, whereas those produced in the lagging strand was slightly smaller than 0.12 kb. No gaps larger than 0.5 kb were detected.  相似文献   

14.
15.
Before cleaving DNA substrates with two recognition sites, the Cfr10I, NgoMIV, NaeI and SfiI restriction endonucleases bridge the two sites through 3D space, looping out the intervening DNA. To characterise their looping interactions, the enzymes were added to plasmids with two recognition sites interspersed with two res sites for site-specific recombination by Tn21 resolvase, in buffers that contained either EDTA or CaCl2 so as to preclude DNA cleavage by the endonuclease; the extent to which the res sites were sequestered into separate loops was evaluated from the degree of inhibition of resolvase. With Cfr10I, a looped complex was detected in the presence but not in the absence of Ca(2+); it had a lifetime of about 90 seconds. Neither NgoMIV nor NaeI gave looped complexes of sufficient stability to be detected by this method. In contrast, SfiI with Ca(2+) produced a looped complex that survived for more than seven hours, whereas its looping interaction in EDTA lasts for about four minutes. When resolvase was added to a SfiI binding reaction in EDTA followed immediately by CaCl2, the looped DNA was blocked from recombination while the unlooped DNA underwent recombination. By measuring the distribution between looped and unlooped DNA at various SfiI concentrations, and by fitting the data to a model for DNA binding by a tetrameric protein to two sites in cis, an equilibrium constant for the looping interaction was determined. The equilibrium constant was essentially independent of the length of DNA between the SfiI sites.  相似文献   

16.
Excluded volume effects on the rate of renaturation of DNA   总被引:8,自引:0,他引:8  
J G Wetmur 《Biopolymers》1971,10(4):601-613
The rate of renaturation of T2 DNA hits been investigated by using complementary DNA strands of different length. The length of the shorter strand ranged from 0.02 to 1.0 times the length of the longer strand. An excluded volume theory is developed to include this type of reaction as well as the DNA–RNA hybridization reaction. Experimental and theoretical rates of renaturation of DNA are found to be in agreement. For the cases studied, the rate was never greater than twice that observed for short strands of the same length renaturing with themselves. The products of renaturation reactions are also considered.  相似文献   

17.
The sequences of five MATE transposable elements were retrieved from the Aspergillus nidulans genome sequence. These elements are 6.1 kb in length and are characterized by 9-10 bp target site duplications, paired approximately 40 bp palindromes close to each end, and in the unmutated elements, 57 clustered Spe-motifs (RWCTAGWY) scattered through their length. Short open reading frames have no known homology. Two of the MATE elements have numerous C --> T transitions on both DNA strands relative to the remaining three elements. These mutations have all the characteristics of repeat-induced point mutation (RIP) previously described in Neurospora crassa, but not experimentally demonstrated in A. nidulans. Ninety-eight percent of mutated cytosines are in CpG and CpA doublets, the former mutating at higher frequency.  相似文献   

18.
19.
20.
Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10(9)bp) can be quantified by this approach in about 50ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号