首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genome of Arabidopsis thaliana is known to contain numerous open reading frames apparently encoding transposases. In order to test the hypothesis that transposable elements have played a role in segmental duplication in this species, we compared the distribution of transposable elements with that of genomic windows that shared gene families to a greater extent than expected by chance. Phylogenetic analyses indicated that duplication of these segments occurred after the monocot-dicot divergence and probably after the eurosid I–eurosid II divergence. Known transposable elements were found to occur in putatively duplicated segments to a far greater extent than expected on the basis of their genome-wide distribution, suggesting that transposition may have played a role in segmental duplication in this species.  相似文献   

2.
Hughes AL  Friedman R 《Genetica》2004,121(2):181-185
Statistical analysis of the distribution of transposable elements (TEs) and tRNA genes in the genome of yeast Saccharomyces cerevisiae indicated that, although tRNA genes and other genes transcribed by RNA polymerase III are targets for TE insertion, the distribution of TEs was significantly more clumped than that of tRNAs. Genomic blocks putatively duplicated as the result of an ancient polyploidization event contained fewer TEs than expected by their length, and nearly two thirds of duplicated blocks lacked TEs altogether. In addition, the edges of duplicated blocks tended to be located in TE-poor genomic regions. These results can be explained by the hypotheses: (1) that transposition events have occurred well after block duplication; (2) that TEs have frequently played a role in genomic rearrangement events in yeast. According to this model, duplicated blocks identifiable as such in the present-day yeast genome are found largely in regions with low TE density because in such regions the duplicated structure has not been obscured by TE-mediated rearrangements.  相似文献   

3.
Genome duplications may have played a role in the early stages of vertebrate evolution, near the time of divergence of the lamprey lineage. Additional genome duplication, specifically in ray-finned fish, may have occurred before the divergence of the teleosts. The common carp (Cyprinus carpio) has been considered tetraploid because of its chromosome number (2n = 100) and its high DNA content. We studied variation using 59 microsatellite primer pairs to better understand the ploidy level of the common carp. Based on the number of PCR amplicons per individual, about 60% of these primer pairs are estimated to amplify duplicates. Segregation patterns in families suggested a partially duplicated genome structure and disomic inheritance. This could suggest that the common carp is tetraploid and that polyploidy occurred by hybridization (allotetraploidy). From sequences of microsatellite flanking regions, we estimated the difference per base between pairs of alleles and between pairs of paralogs. The distribution of differences between paralogs had two distinct modes suggesting one whole-genome duplication and a more recent wave of segmental duplications. The genome duplication was estimated to have occurred about 12 MYA, with the segmental duplications occurring between 2.3 and 6.8 MYA. At 12 MYA, this would be one of the most recent genome duplications among vertebrates. Phylogenetic analysis of several cyprinid species suggests an evolutionary model for this tetraploidization, with a role for polyploidization in speciation and diversification.  相似文献   

4.
5.
Gene duplication occurs repeatedly in the evolution of genomes, and the rearrangement of genomic segments has also occurred repeatedly over the evolution of eukaryotes. We studied the interaction of these two factors in mammalian evolution by comparing the chromosomal distribution of multigene families in human and mouse. In both species, gene families tended to be confined to a single chromosome to a greater extent than expected by chance. The average number of families shared between chromosomes was nearly 60% higher in mouse than in human, and human chromosomes rarely shared large numbers of gene families with more than one or two other chromosomes, whereas mouse chromosomes frequently did so. A higher proportion of duplicate gene pairs on the same chromosome originated from recent duplications in human than in mouse, whereas a higher proportion of duplicate gene pairs on separate chromosomes arose from ancient duplications in human than in mouse. These observations are most easily explained by the hypotheses that (1) most gene duplications arise in tandem and are subsequently separated by segmental rearrangement events, and (2) that the process of segmental rearrangement has occurred at a higher rate in the lineage of mouse than in that of human.  相似文献   

6.
Wang X  Tang H  Bowers JE  Feltus FA  Paterson AH 《Genetics》2007,177(3):1753-1763
Many genes duplicated by whole-genome duplications (WGDs) are more similar to one another than expected. We investigated whether concerted evolution through conversion and crossing over, well-known to affect tandem gene clusters, also affects dispersed paralogs. Genome sequences for two Oryza subspecies reveal appreciable gene conversion in the approximately 0.4 MY since their divergence, with a gradual progression toward independent evolution of older paralogs. Since divergence from subspecies indica, approximately 8% of japonica paralogs produced 5-7 MYA on chromosomes 11 and 12 have been affected by gene conversion and several reciprocal exchanges of chromosomal segments, while approximately 70-MY-old "paleologs" resulting from a genome duplication (GD) show much less conversion. Sequence similarity analysis in proximal gene clusters also suggests more conversion between younger paralogs. About 8% of paleologs may have been converted since rice-sorghum divergence approximately 41 MYA. Domain-encoding sequences are more frequently converted than nondomain sequences, suggesting a sort of circularity--that sequences conserved by selection may be further conserved by relatively frequent conversion. The higher level of concerted evolution in the 5-7 MY-old segmental duplication may reflect the behavior of many genomes within the first few million years after duplication or polyploidization.  相似文献   

7.
The divergence of Salmonella enterica and Escherichia coli is estimated to have occurred approximately 140 million years ago. Despite this evolutionary distance, the genomes of these two species still share extensive synteny and homology. However, there are significant differences between the two species in terms of genes putatively acquired via various horizontal transfer events. Here we report on the composition and distribution across the Salmonella genus of a chromosomal region designated SPI-10 in Salmonella enterica serovar Typhi and located adjacent to tRNA(leuX). We find that across the Salmonella genus the tRNA(leuX) region is a hypervariable hot spot for horizontal gene transfer; different isolates from the same S. enterica serovar can exhibit significant variation in this region. Many P4 phage, plasmid, and transposable element-associated genes are found adjacent to tRNA(leuX) in both Salmonella and E. coli, suggesting that these mobile genetic elements have played a major role in driving the variability of this region.  相似文献   

8.
We have conducted molecular population genetics analyses to understand the relationships among the transposable elements (TEs) in Drosophila melanogaster, in combination with sequence comparisons of TEs from two related species, D. simulans and D. yakuba. We observed much lower than expected genetic differences among elements, clear evidence for departure from expectations for equilibrium copy numbers and little divergence between species. This suggests that a large proportion of TEs in D. melanogaster had a recent origin as a result of interspecies movement.  相似文献   

9.
Gene duplication has been considered the most important way of generating genetic novelties. The subsequent evolution right after gene duplication is critical for new function to occur. Here we analyzed the evolutionary pattern for a recently duplicated segment between rice chromosomes 11 and 12. This duplication event was estimated to occur about 6 million years ago, during the divergence of the B- and C-genome rice species. The duplicate segment in chromosome 12 has significantly higher frequency of sequence rearrangement rate than non-duplicated regions. The rearrangement rate is approximately 6.5 breakages/Mb per million years, about six times higher than the fastest rate ever reported in eukaryotes. The genes within both segments experienced accelerated nucleotide substitution rates revealed by synonymous (Ks) and non-synonymous divergence (Ka) between Oryza sativa indica and O. sativa japonica. Analysis using EST data also implicates rapid divergence in expression between these segmental duplicate genes. These overall rapid changes from different perspective for the first time provide evidence that relaxation of selection also occurs in large-scale duplications.  相似文献   

10.
We analysed the distribution of transposable elements (TEs) in 100 aligned pairs of orthologous intergenic regions from the mouse and human genomes. Within these regions, conserved segments of high similarity between the two species alternate with segments of low similarity. Identifiable TEs comprise 40-60% of segments of low similarity. Within such segments, a particular copy of a TE found in one species has no orthologue in the other. Overall, TEs comprise only approximately 20 % of conserved segments. However, TEs from two families, MIR and L2, are rather common within conserved segments. Statistical analysis of the distributions of TEs suggests that a majority of the MIR and L2 elements present in murine intergenic regions have human orthologues. These elements must have been present in the common ancestor of human and mouse and have remained under substantial negative selection that prevented their divergence beyond recognition. If so, recruitment of MIR- and L2-derived sequences to perform a function that increases host fitness is rather common, with at least two such events per host gene. The central part of the MIR consensus sequence is over-represented in conserved segments given its background frequency in the genome, suggesting that it is under the strongest selective constraint.  相似文献   

11.
水稻所在的稻属(Oryza)共有24个左右的物种。由于野生稻含有大量的优良农艺性状基因, 在水稻遗传学研究中日益受到重视。随着国际稻属基因组计划的开展, 越来越多的稻属基因组序列被测定, 稻属成为进行比较、功能和进化基因组学研究的模式系统。近期开展的一系列研究对稻属不同基因组区段以及全基因组序列的比较分析, 揭示了稻属在基因组大小、基因移动、多倍体进化、常染色质到异染色质的转化以及着丝粒区域的进化等方面的分子机制。转座子的活性以及转座子因非均等重组或非法重组而造成的删除, 对稻属基因组的扩增和收缩具有重要作用。DNA双链断裂修复介导的基因移动, 特别是非同源末端连接, 是稻属基因组非共线性基因形成的主要来源。稻属基因组从常染色质到异染色质的转换过程, 伴随着转座子的大量扩增、基因片段的区段性和串联重复以及从基因组其他位置不断捕获异染色质基因。对稻属不同物种间基因拷贝数、特异基因和重要农艺性状基因的进化等研究, 可揭示稻属不同物种间表型和适应性差异的分子基础, 将加速水稻的育种和改良。  相似文献   

12.
Endogenous retroviruses (ERVs) result from germ line infections by exogenous retroviruses. They can proliferate within the genome of their host species until they are either inactivated by mutation or removed by recombinational deletion. ERVs belong to a diverse group of mobile genetic elements collectively termed transposable elements (TEs). Numerous studies have attempted to elucidate the factors determining the genomic distribution and persistence of TEs. Here we show that, within humans, gene density and not recombination rate correlates with fixation of endogenous retroviruses, whereas the local recombination rate determines their persistence in a full-length state. Recombination does not appear to influence fixation either via the ectopic exchange model or by indirect models based on the efficacy of selection. We propose a model linking rates of meiotic recombination to the probability of recombinational deletion to explain the effect of recombination rate on persistence. Chromosomes 19 and Y are exceptions, possessing more elements than other regions, and we suggest this is due to low gene density and elevated rates of human ERV integration in males for chromosome Y and segmental duplication for chromosome 19.  相似文献   

13.
Gene duplication and mobile genetic elements in the morning glories   总被引:11,自引:0,他引:11  
Hoshino A  Johzuka-Hisatomi Y  Iida S 《Gene》2001,265(1-2):1-10
We review gene duplication and subsequent structural and functional divergence in the anthocyanin biosynthesis genes in the Japanese and common morning glories and discuss their evolutionary implications. These plants appear to contain at least six copies of the CHS gene and three tandem copies of the DFR gene. Of these, the CHS-D and DFR-B genes are mainly responsible for flower pigmentation and mutations in these genes confer white flowers. We compared the genomic sequences of these duplicated genes between the two morning glories and found small mobile element-like sequences (MELSs) and direct repeats (DRs) in introns and intergenic regions. The results indicate that the MELS elements and DRs play significant roles in divergence after gene duplication. We also discuss DNA rearrangements occurring before and after speciation of these morning glories. DNA transposable elements belonging to the Ac/Ds or En/Spm families have acted as major spontaneous mutagens in these morning glories. We also describe the structural features of the first Mu-related element found in the morning glories and polymorphisms found in the same species.  相似文献   

14.
MOTIVATION: Chromosomal segments that share common ancestry, either through genomic duplication or species divergence, are said to be segmental homologs of one another. Their identification allows researchers to leverage knowledge of model organisms for use in other systems and is of value for studies of genome evolution. However, identification and statistical evaluation of segmental homologies can be a challenge when the segments are highly diverged. RESULTS: We describe a flexible dynamic programming algorithm for the identification of segments having multiple homologous features. We model the probability of observing putative segmental homologies by chance and incorporate our findings into the parameterization of the algorithm and the statistical evaluation of its output. Combined, these findings allow segmental homologies to be identified in comparisons within and between genomic maps in a rigorous, rapid, and automated fashion.  相似文献   

15.
Evidence that rice and other cereals are ancient aneuploids   总被引:26,自引:0,他引:26       下载免费PDF全文
Detailed analyses of the genomes of several model organisms revealed that large-scale gene or even entire-genome duplications have played prominent roles in the evolutionary history of many eukaryotes. Recently, strong evidence has been presented that the genomic structure of the dicotyledonous model plant species Arabidopsis is the result of multiple rounds of entire-genome duplications. Here, we analyze the genome of the monocotyledonous model plant species rice, for which a draft of the genomic sequence was published recently. We show that a substantial fraction of all rice genes ( approximately 15%) are found in duplicated segments. Dating of these block duplications, their nonuniform distribution over the different rice chromosomes, and comparison with the duplication history of Arabidopsis suggest that rice is not an ancient polyploid, as suggested previously, but an ancient aneuploid that has experienced the duplication of one-or a large part of one-chromosome in its evolutionary past, approximately 70 million years ago. This date predates the divergence of most of the cereals, and relative dating by phylogenetic analysis shows that this duplication event is shared by most if not all of them.  相似文献   

16.
Gene duplication has certainly played a major role in structuring vertebrate genomes but the extent and nature of the duplication events involved remains controversial. A recent study identified two major episodes of gene duplication: one episode of putative genome duplication ca. 500 Myr ago and a more recent gene-family expansion attributed to segmental or tandem duplications. We confirm this pattern using methods not reliant on molecular clocks for individual gene families. However, analysis of a simple model of the birth-death process suggests that the apparent recent episode of duplication is an artefact of the birth-death process. We show that a constant-rate birth-death model is appropriate for gene duplication data, allowing us to estimate the rate of gene duplication and loss in the vertebrate genome over the last 200 Myr (0.00115 and 0.00740 Myr(-1) lineage(-1), respectively). Finally, we show that increasing rates of gene loss reduce the impact of a genome-wide duplication event on the distribution of gene duplications through time.  相似文献   

17.
18.
The hAT transposons, very abundant in all kingdoms, have a common evolutionary origin probably predating the plant-fungi-animal divergence. In this paper we present their general characteristics. Members of this superfamily belong to Class II transposable elements. hAT elements share transposase, short terminal inverted repeats and eight base-pairs duplication of genomic target. We focus on hAT elements in Drosophila, especially hobo. Its distribution, dynamics and impact on genome restructuring in laboratory strains as well as in natural populations are reported. Finally, the evolutionary history of hAT elements, their domestication and use as transgenic tools are discussed.  相似文献   

19.
The recent availability of protein–protein interaction networks for several species makes it possible to study protein complexes in an evolutionary context. In this article, we present a novel network-based framework for reconstructing the evolutionary history of protein complexes. Our analysis is based on generalizing evolutionary measures for single proteins to the level of whole subnetworks, comprehensively considering a broad set of computationally derived complexes and accounting for both sequence and interaction changes. Specifically, we compute sets of orthologous complexes across species, and use these to derive evolutionary rate and age measures for protein complexes. We observe significant correlations between the evolutionary properties of a complex and those of its member proteins, suggesting that protein complexes form early in evolution and evolve as coherent units. Additionally, our approach enables us to directly quantify the extent to which gene duplication has played a role in the evolution of complexes. We find that about one quarter of the sets of orthologous complexes have originated from evolutionary cores of homodimers that underwent duplication and divergence, testifying to the important role of gene duplication in protein complex evolution.  相似文献   

20.
The recent availability of genomic sequence information for the class I region of the MHC has provided an opportunity to examine the genomic organization of HLA class I (HLAcI) and PERB11/MIC genes with a view to explaining their evolution from the perspective of extended genomic duplications rather than by simple gene duplications and/or gene conversion events. Analysis of genomic sequence from two regions of the MHC (the alpha- and beta-blocks) revealed that at least 6 PERB11 and 14 HLAcI genes, pseudogenes, and gene fragments are contained within extended duplicated segments. Each segment was searched for the presence of shared (paralogous) retroelements by RepeatMasker in order to use them as markers of evolution, genetic rearrangements, and evidence of segmental duplications. Shared Alu elements and other retroelements allowed the duplicated segments to be classified into five distinct groups (A to E) that could be further distilled down to an ancient preduplication segment containing a HLA and PERB11 gene, an endogenous retrovirus (HERV-16), and distinctive retroelements. The breakpoints within and between the different HLAcI segments were found mainly within the PERB11 and HLA genes, HERV-16, and other retroelements, suggesting that the latter have played a major role in duplication and indel events leading to the present organization of PERB11 and HLAcI genes. On the basis of the features contained within the segments, a coevolutionary model premised on tandem duplication of single and multipartite genomic segments is proposed. The model is used to explain the origins and genomic organization of retroelements, HERV-16, DNA transposons, PERB11, and HLAcI genes as distinct segmental combinations within the alpha- and beta-blocks of the human MHC. Received: 5 December 1998 / Accepted: 27 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号