首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Baoqiang Cao  Ron Elber 《Proteins》2010,78(4):985-1003
We investigate small sequence adjustments (of one or a few amino acids) that induce large conformational transitions between distinct and stable folds of proteins. Such transitions are intriguing from evolutionary and protein‐design perspectives. They make it possible to search for ancient protein structures or to design protein switches that flip between folds and functions. A network of sequence flow between protein folds is computed for representative structures of the Protein Data Bank. The computed network is dense, on an average each structure is connected to tens of other folds. Proteins that attract sequences from a higher than expected number of neighboring folds are more likely to be enzymes and alpha/beta fold. The large number of connections between folds may reflect the need of enzymes to adjust their structures for alternative substrates. The network of the Cro family is discussed, and we speculate that capacity is an important factor (but not the only one) that determines protein evolution. The experimentally observed flip from all alpha to alpha + beta fold is examined by the network tools. A kinetic model for the transition of sequences between the folds (with only protein stability in mind) is proposed. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
It is currently believed that the atlas of existing protein structures is faithfully represented in the Protein Data Bank. However, whether this atlas covers the full universe of all possible protein structures is still a highly debated issue. By using a sophisticated numerical approach, we performed an exhaustive exploration of the conformational space of a 60 amino acid polypeptide chain described with an accurate all-atom interaction potential. We generated a database of around 30,000 compact folds with at least of secondary structure corresponding to local minima of the potential energy. This ensemble plausibly represents the universe of protein folds of similar length; indeed, all the known folds are represented in the set with good accuracy. However, we discover that the known folds form a rather small subset, which cannot be reproduced by choosing random structures in the database. Rather, natural and possible folds differ by the contact order, on average significantly smaller in the former. This suggests the presence of an evolutionary bias, possibly related to kinetic accessibility, towards structures with shorter loops between contacting residues. Beside their conceptual relevance, the new structures open a range of practical applications such as the development of accurate structure prediction strategies, the optimization of force fields, and the identification and design of novel folds.  相似文献   

4.
It is well known that the structure is currently available only for a small fraction of known protein sequences. It is urgent to discover the important features of known protein sequences based on present protein structures. Here, we report a study on the size distribution of protein families within different types of folds. The fold of a protein means the global arrangement of its main secondary structures, both in terms of their relative orientations and their topological connections, which specify a certain biochemical and biophysical aspect. We first search protein families in the structural database SCOP against the sequence-based database Pfam, and acquire a pool of corresponding Pfam families whose structures can be deemed as known. This pool of Pfam families is called the sample space for short. Then the size distributions of protein families involving the sample space, the Pfam database and the SCOP database are obtained. The results indicate that the size distributions of protein families under different kinds of folds abide by similar power-law. Specially, the largest families scatter evenly in different kinds of folds. This may help better understand the relationship of protein sequence, structure and function. We also show that the total of proteins with known structures can be considered a random sample from the whole space of protein sequences, which is an essential but unsettled assumption for related predictions, such as, estimating the number of protein folds in nature. Finally we conclude that about 2957 folds are needed to cover the total Pfam families by a simple method.  相似文献   

5.
Folds are the basic building blocks of protein structures. Understanding the emergence of novel protein folds is an important step towards understanding the rules governing the evolution of protein structure and function and for developing tools for protein structure modeling and design. We explored the frequency of occurrences of an exhaustively classified library of supersecondary structural elements (Smotifs), in protein structures, in order to identify features that would define a fold as novel compared to previously known structures. We found that a surprisingly small set of Smotifs is sufficient to describe all known folds. Furthermore, novel folds do not require novel Smotifs, but rather are a new combination of existing ones. Novel folds can be typified by the inclusion of a relatively higher number of rarely occurring Smotifs in their structures and, to a lesser extent, by a novel topological combination of commonly occurring Smotifs. When investigating the structural features of Smotifs, we found that the top 10% of most frequent ones have a higher fraction of internal contacts, while some of the most rare motifs are larger, and contain a longer loop region.  相似文献   

6.
It has been known that topologically different proteins of the same class sometimes share the same spatial arrangement of secondary structure elements (SSEs). However, the frequency by which topologically different structures share the same spatial arrangement of SSEs is unclear. It is important to estimate this frequency because it provides both a deeper understanding of the geometry of protein folds and a valuable suggestion for predicting protein structures with novel folds. Here we clarified the frequency with which protein folds share the same SSE packing arrangement with other folds, the types of spatial arrangement of SSEs that are frequently observed across different folds, and the diversity of protein folds that share the same spatial arrangement of SSEs with a given fold, using a protein structure alignment program MICAN, which we have been developing. By performing comprehensive structural comparison of SCOP fold representatives, we found that approximately 80% of protein folds share the same spatial arrangement of SSEs with other folds. We also observed that many protein pairs that share the same spatial arrangement of SSEs belong to the different classes, often with an opposing N- to C-terminal direction of the polypeptide chain. The most frequently observed spatial arrangement of SSEs was the 2-layer α/β packing arrangement and it was dispersed among as many as 27% of SCOP fold representatives. These results suggest that the same spatial arrangements of SSEs are adopted by a wide variety of different folds and that the spatial arrangement of SSEs is highly robust against the N- to C-terminal direction of the polypeptide chain.  相似文献   

7.
To explore whether the generation of new protein folds could be linked to metallic cofactor recruitment, we identified the oldest examples of folds for manganese, iron, zinc, and copper proteins by analyzing their fold‐domain mapping patterns. We discovered that the generation of these folds was tightly coupled to corresponding metals. We found that the emerging order for these folds, i.e., manganese and iron protein folds appeared earlier than zinc and copper counterparts, coincides with the putative bioavailability of the corresponding metals in the ancient anoxic ocean. Therefore, we conclude that metallic cofactors, like organic cofactors, play an evolutionary role in the formation of new protein folds. This link could be explained by the emergence of protein structures with novel folds that could fulfill the new protein functions introduced by the metallic cofactors. These findings not only have important implications for understanding the evolutionary mechanisms of protein architectures, but also provide a further interpretation for the evolutionary story of superoxide dismutases.  相似文献   

8.
Protein structures cluster into families of folds that can result from extremely different amino acid sequences [1]. Because the enormous amount of genetic information generates a limited number of protein folds [2], a particular domain structure often assumes numerous functions. How new protein structures and new functions evolve under these limitations remains elusive. Molecular evolution may be driven by the ability of biomacromolecules to adopt multiple conformations as a bridge between different folds [3-6]. This could allow proteins to explore new structures and new tasks while part of the structural ensemble retains the initial conformation and function as a safeguard [7]. Here we show that a global structural switch can arise from single amino acid changes in cysteine-rich domains (CRD) of cnidarian nematocyst proteins. The ability of these CRDs to form two structures with different disulfide patterns from an identical cysteine pattern is distinctive [8]. By applying a structure-based mutagenesis approach, we demonstrate that a cysteine-rich domain can interconvert between two natively occurring domain structures via a bridge state containing both structures. Comparing cnidarian CRD sequences leads us to believe that the mutations we introduced to stabilize each structure reflect the birth of new protein folds in evolution.  相似文献   

9.
The quest to order and classify protein structures has lead to various classification schemes, focusing mostly on hierarchical relationships between structural domains. At the coarsest classification level, such schemes typically identify hundreds of types of fundamental units called folds. As a result, we picture protein structure space as a collection of isolated fold islands. It is obvious, however, that many protein folds share structural and functional commonalities. Locating those commonalities is important for our understanding of protein structure, function, and evolution. Here, we present an alternative view of the protein fold space, based on an interfold similarity measure that is related to the frequency of fragments shared between folds. In this view, protein structures form a complicated, crossconnected network with very interesting topology. We show that interfold similarity based on sequence/structure fragments correlates well with similarities of functions between protein populations in different folds.  相似文献   

10.
Miller J  Zeng C  Wingreen NS  Tang C 《Proteins》2002,47(4):506-512
Despite the variety of protein sizes, shapes, and backbone configurations found in nature, the design of novel protein folds remains an open problem. Within simple lattice models it has been shown that all structures are not equally suitable for design. Rather, certain structures are distinguished by unusually high designability: the number of amino acid sequences for which they represent the unique lowest energy state; sequences associated with such structures possess both robustness to mutation and thermodynamic stability. Here we report that highly designable backbone conformations also emerge in a realistic off-lattice model. The highly designable conformations of a chain of 23 amino acids are identified and found to be remarkably insensitive to model parameters. Although some of these conformations correspond closely to known natural protein folds, such as the zinc finger and the helix-turn-helix motifs, others do not resemble known folds and may be candidates for novel fold design.  相似文献   

11.
This paper presents and discusses evidence suggesting how the diversity of domain folds in existence today might have evolved from peptide ancestors. We apply a structure similarity detection method to detect instances where localized regions of different protein folds contain highly similar sequences and structures. Results of performing an all-on-all comparison of known structures are described and compared with other recently published findings. The numerous instances of local sequence and structure similarities within different protein folds, together with evidence from proteins containing sequence and structure repeats, argues in favor of the evolution of modern single polypeptide domains from ancient short peptide ancestors (antecedent domain segments (ADSs)). In this model, ancient protein structures were formed by self-assembling aggregates of short polypeptides. Subsequently, and perhaps concomitantly with the evolution of higher fidelity DNA replication and repair systems, single polypeptide domains arose from the fusion of ADSs genes. Thus modern protein domains may have a polyphyletic origin.  相似文献   

12.
Chu CK  Feng LL  Wouters MA 《Proteins》2005,60(4):577-583
Structural data mining studies attempt to deduce general principles of protein structure from solved structures deposited in the protein data bank (PDB). The entire database is unsuitable for such studies because it is not representative of the ensemble of protein folds. Given that novel folds continue to be unearthed, some folds are currently unrepresented in the PDB while other folds are overrepresented. Overrepresentation can easily be avoided by filtering the dataset. PDB_SELECT is a well-used representative subset of the PDB that has been deduced by sequence comparison. Specifically, structures with sequences that exhibit a pairwise sequence identity above a threshold value are weeded from the dataset. Although length criteria for pairwise alignments have a structural basis, this automated method of pruning is essentially sequence-based and runs into problems in the twilight zone, possibly resulting in some folds being overrepresented. The value-added structure databases SCOP and CATH are also a potential source of a nonredundant dataset. Here we compare the sequence-derived dataset PDB_SELECT with the structural databases SCOP (Structural Classification Of Proteins) and CATH (Class-Architecture-Topology-Homology). We show that some folds remain overrepresented in the PDB_SELECT dataset while other folds are not represented at all. However, SCOP and CATH also have their own problems such as the labor-intensiveness of the update process and the problem of determining whether all folds are equally or sufficiently distant. We discuss areas where further work is required.  相似文献   

13.
Accurately assigning folds for divergent protein sequences is a major obstacle to structural studies. Herein, we outline an effective method for fold recognition using sets of PSSMs, each of which is constructed for different protein folds. Our analyses demonstrate that FSL (Fold-specific Position Specific Scoring Matrix Libraries) can predict/relate structures given only their amino acid sequences of highly divergent proteins. This ability to detect distant relationships is dependent on low-identity sequence alignments obtained from FSL. Results from our experiments demonstrate that FSL perform well in recognizing folds from the "twilight-zone" SABmark dataset. Further, this method is capable of accurate fold prediction in newly determined structures. We suggest that by building complete PSSM libraries for all unique folds within the Protein Database (PDB), FSL can be used to rapidly and reliably annotate a large subset of protein folds at proteomic level. The related programs and fold-specific PSSMs for our FSL are publicly available at: http://ccp.psu.edu/download/FSLv1.0/.  相似文献   

14.
Advances in structural genomics.   总被引:10,自引:0,他引:10  
New computational techniques have allowed protein folds to be assigned to all or parts of between a quarter (Caenorhabditis elegans) and a half (Mycoplasma genitalium) of the individual protein sequences in different genomes. These assignments give a new perspective on domain structures, gene duplications, protein families and protein folds in genome sequences.  相似文献   

15.
In the fold recognition approach to structure prediction, a sequence is tested for compatibility with an already known fold. For membrane proteins, however, few folds have been determined experimentally. Here the feasibility of computing the vast majority of likely membrane protein folds is tested. The results indicate that conformation space can be effectively sampled for small numbers of helices. The vast majority of potential monomeric membrane protein structures can be represented by about 30-folds for three helices, but increases exponentially to about 1,500,000 folds for seven helices. The generated folds could serve as templates for fold recognition or as starting points for conformational searches that are well distributed throughout conformation space.  相似文献   

16.
Yo Matsuo  Ken Nishikawa 《Proteins》1995,23(3):370-375
A protein fold recognition method was tested by the blind prediction of the structures of a set of proteins. The method evaluates the compatibility of an amino acid sequence with a three-dimensional structure using the four evaluation functions: side-chain packing, solvation, hydrogen-bonding, and local conformation functions. The structures of 14 proteins containing 19 sequences were predicted. The predictions were compared with the experimental structures. The experimental results showed that 9 of the 19 target sequences have known folds or portions of known folds. Among them, the folds of Klebsiella aerogenes urease β subunit (KAUB) and pyruvate phosphate dikinase domain 4 (PPDK4) were successfully recognized; our method predicted that KAUB and PPDK4 would adopt the folds of macromomycin (Ig-fold) and phosphoribosylanthra-nilate isomerase:indoleglycerol-phosphate synthase (TIM barrel), respectively, and the experimental structure revealed that they actually adopt the predicted folds. The predictions for the other targets were not successful, but they often gave secondary structural patterns similar to those of the experimental structures. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Antimicrobial resistance within a wide range of infectious agents is a severe and growing public health threat. Antimicrobial peptides (AMPs) are among the leading alternatives to current antibiotics, exhibiting broad spectrum activity. Their activity is determined by numerous properties such as cationic charge, amphipathicity, size, and amino acid composition. Currently, only around 10% of known AMP sequences have experimentally solved structures. To improve our understanding of the AMP structural universe we have carried out large scale ab initio 3D modeling of structurally uncharacterized AMPs that revealed similarities between predicted folds of the modeled sequences and structures of characterized AMPs. Two of the peptides whose models matched known folds are Lebocin Peptide 1A (LP1A) and Odorranain M, predicted to form β-hairpins but, interestingly, to lack the intramolecular disulfide bonds, cation-π or aromatic interactions that generally stabilize such AMP structures. Other examples include Ponericin Q42, Latarcin 4a, Kassinatuerin 1, Ceratotoxin D, and CPF-B1 peptide, which have α-helical folds, as well as mixed αβ folds of human Histatin 2 peptide and Garvicin A which are, to the best of our knowledge, the first linear αββ fold AMPs lacking intramolecular disulfide bonds. In addition to fold matches to experimentally derived structures, unique folds were also obtained, namely for Microcin M and Ipomicin. These results help in understanding the range of protein scaffolds that naturally bear antimicrobial activity and may facilitate protein design efforts towards better AMPs.  相似文献   

18.
Regions of rare conformation were located in 300 protein crystal structures representing seven major protein folds. A distance matrix algorithm was used to search rapidly for 9-residue fragments of rare backbone conformation using a comparison to a relational database of encoded fragments derived from the database of nonredundant structures. Rare fragments were found in 61% of the analyzed protein structures. Detailed analysis was performed for 78 proteins of different folds. The rare fragments were located near functional sites in 72% of the protein structures. The rare fragments often formed parts of ligand-binding sites (59%), protein-protein interfaces (8%), and domain-domain contacts (5%). Of the remaining structures, 5% had a high average B-factor or high local B-factors. Statistical analysis suggests that the association between ligands and rare regions does not occur by chance alone. The present study is likely to underestimate the number of functional sites, because not all analyzed protein structures contained a ligand. The results suggest that rapid searches for regions with rare local backbone conformations can assist in prediction of functional sites in novel proteins.  相似文献   

19.
Theoretical and experimental studies of protein folding have suggested that the topology of the native state may be the most important factor determining the folding pathway of a protein, independent of its specific amino acid sequence. To test this concept, many experimental studies have been carried out with the aim of comparing the folding pathways of proteins that possess similar tertiary structures, but divergent sequences. Many of these studies focus on quantitative comparisons of folding transition state structures, as determined by Phi(f) value analysis of folding kinetic data. In some of these studies, folding transition state structures are found to be highly conserved, whereas in others they are not. We conclude that folds displaying more conserved transition state structures may have the most restricted number of possible folding pathways and that folds displaying low transition state structural conservation possess many potential pathways for reaching the native state.  相似文献   

20.
Three-dimensional structures of proteins are the support of their biological functions. Their folds are maintained by inter-residue interactions which are one of the main focuses to understand the mechanisms of protein folding and stability. Furthermore, protein structures can be composed of single or multiple functional domains that can fold and function independently. Hence, dividing a protein into domains is useful for obtaining an accurate structure and function determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号