首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six tRNA(Leu) isoacceptors from yellow lupin seeds were purified, sequenced, and their readthrough properties over the UAG stop codon were tested using TMV RNA as a messenger. The tested tRNAs(Leu) did not show amber suppressor activity. The partial structure of tRNA(Gln), a minor species in yellow lupin, was also determined. Comparison of the nucleotide sequence of all known isoacceptors of tRNA(Tyr), tRNA(Gln) and tRNA(Leu) from plants, mammals and ciliates enabled us to find general structural requirements for tRNA to be a UAG suppressor. From the partial sequence of lupin tRNA(Gln) we suggest that it will have readthrough properties.  相似文献   

2.
The nucleotide sequence of tRNAPhe of yellow lupin seeds (Lupinus luteus) is deduced from the composition of pancreatic and T1 ribonuclease digestion products and compared with tRNAPhe of wheat germ. Major lupin tRNAPhe, unlike pea tRNAPhe, differs from wheat germ tRNAPhe in the first base pair of stem TpsiC ("e").  相似文献   

3.
ATP (CTP):tRNA nucleotidyltransferase (EC 2.7.7.25) was purified to apparent homogeneity from a crude extract of Lupinus albus seeds. Purification was accomplised using a multistep protocol including ammonium sulfate fractionation and chromatography on anion-exchange, hydroxylapatite and affinity columns. The lupin enzyme exhibited a pH optimum and salt and ion requirements that were similar to those of tRNA nucleotidyltransferases from other sources. Oligonucleotides, based on partial amino acid sequence of the purified protein, were used to isolate the corresponding cDNA. The cDNA potentially encodes a protein of 560 amino acids with a predicted molecular mass of 64164 Da in good agreement with the apparent molecular mass of the pure protein determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The size and predicted amino acid sequence of the lupin enzyme are more similar to the enzyme from yeast than from Escherichia coli with some blocks of amino acid sequence conserved among all three enzymes. Functionality of the lupin cDNA was shown by complementation of a temperature-sensitive mutation in the yeast tRNA nucleotidyltransferase gene. While the lupin cDNA compensated for the nucleocytoplasmic defect in the yeast mutant it did not enable the mutant strain to grow at the non-permissive temperature on a non-fermentable carbon source.  相似文献   

4.
Previous results from this laboratory indicated that, in Escherichia coli K12, a new class of missense suppressors, which read the lysine codons AAA and AAG, may be misacylated lysine transfer RNAs. We therefore isolated and determined the nucleotide sequence of the lysine tRNA from two of the suppressor strains. In each case, we found both wild-type and mutant species of lysine tRNA, a result consistent with evidence that there are two genes for lysine tRNA in the E coli genome. The wild-type sequence was essentially identical to that reported for lysine tRNA from E. coli B. The mutant species isolated from each suppressor strain had a U for C70 nucleotide substitution, demonstrating that the AAG suppressor is a mutant lysine tRNA. The nucleotide substitution in the amino acid acceptor stem is consistent with the in vivo evidence that the suppressor corrects AAA and AAG missense mutations by inserting an amino acid other than lysine during polypeptide synthesis. This report represents the first verification of missense suppression caused by misacylation of a mutant tRNA.  相似文献   

5.
The genetic diversity of 45 bradyrhizobial isolates that nodulate several Lupinus and Ornithopus species in different geographic locations was investigated by 16S rDNA PCR-RFLP and sequence analysis, 16S-23S rDNA intergenic spacer (IGS) PCR-RFLP analysis, and ERIC-PCR genomic fingerprinting. Reference strains of Bradyrhizobium japonicum, B. liaoningense and B. elkanii and some Canarian isolates from endemic woody legumes in the tribe Genisteae were also included. The 16S rDNA-RFLP analysis resolved 9 genotypes of lupin isolates, a group of fourteen isolates presented restriction-genotypes identical or very similar to B. japonicum, while another two main groups of isolates (69%) presented genotypes that clearly separated them from the reference species of soybean. 16S rDNA sequencing of representative strains largely agreed with restriction analysis, except for a group of six isolates, and showed that all the lupin isolates are relatives of B. japonicum, but different lineages were observed. The 16S-23S IGS-RFLP analysis showed a high resolution level, resolving 19 distinct genotypes among 30 strains analysed, and so demonstrating the heterogeneity of the 16S-RFLP groups. ERIC-PCR fingerprint analysis showed an enormous genetic diversity producing a different pattern for each but two of the isolates. Phylogeny of nodC gene was independent from the 16S rRNA phylogeny, and showed a tight relationship in the symbiotic region of the lupin isolates with isolates from Canarian genistoid woody legumes, and in concordance, cross-nodulation was found. We conclude that Lupinus is a promiscuous host legume that is nodulated by rhizobia with very different chromosomal genotypes, which could even belong to several species of Bradyrhizobium. No correlation among genomic background, original host plant and geographic location was found, so, different chromosomal genotypes could be detected at a single site and in a same plant species, on the contrary, an identical genotype was detected in very different geographical locations and plants.  相似文献   

6.
7.
Glutamine synthetase, purified from Lupinus angustifolius legume nodules, was carboxymethylated and succinylated prior to chemical or enzymatic cleavage. Peptides were purified and sequenced. An oligonucleotide probe was constructed for the sequence MPGQW. This probe was used to identify a glutamine synthetase cDNA clone, pGS5, from a lupin nodule cDNA library constructed in pBR322. pGS5 was sequenced (1043 bp) and computer-assisted homology searching revealed a high degree of conservation between this lupin partial cDNA clone and other plant glutamine synthetases at both the amino acid (>90%) and nucleotide (>80%) level. Northern and Southern analyses using pGS5 supported the conclusion that a multigene glutamine synthetase family exists in lupin which is differentially expressed in both an organ-specific and temporal manner. Western and Northern blot analyses indicated the accumulation of a glutamine synthetase specific mRNA species during nodule development corresponded to the appearance of a novel glutamine synthetase polypeptide between 8 and 10 days after rhizobial inoculation.  相似文献   

8.
9.
10.
As a continuation of our studies on plant (yellow lupin, Lupinus luteus) aminoacyl-tRNA synthetases we describe here formation and some properties of valyl-tRNA synthetase-bound valyl adenylate (EVal(Val-AMP)) and seryl-tRNA synthetase-bound seryl adenylate (ESer(Ser-AMP)). Valyl-tRNA synthetase-bound valyl adenylate was detected and isolated by several approaches in the pH range 6--10. In that range inorganic pyrophosphatase increases the amount of valyl adenylate by factor 1.8 regardless of pH. 50% of valine from the EVal(Val-AMP) complex isolated by Sephadex G-100 gel filtration was transferred to tRNA with a rate constant greater than 4 min-1 (pH 6.2, 10 degrees C). The ratio of valine to AMP in the enzyme-bound valyl adenylate is 1 : 1 and it is not changed by the presence of periodate-oxidized tRNA. In contrast to enzyme-bound valyl adenylate, formation of ESer(Ser-AMP) is very sensitive to pH. Inorganic pyrophosphatase increases the amount of seryl adenylate by a factor 6 at pH 8.0 and 30 at pH 6.9 60% of serine from the ESer(Ser-AMP) complex was transferred to tRNA with a rate constant greater than 4 min-1 (pH 8.0, 0 degrees C). The ratio of serine to AMP in the enzyme-bound seryl adenylate is 1 : 1. The rate of synthesis of the enzyme-bound aminoacyl adenylates was measured by ATP-PPi exchange. Michaelis constants for the substrates of valyl-tRNA and seryl-tRNA synthetases in ATP-PPi exchange were determined. Effects of pH, MgCl2 and KCl on the initial velocity of aminoacyl adenylate formation are described. For comparison, catalytic indices in the aminoacylation reactions catalyzed by both lupin enzymes are given and effects of pH, MgCl2 and KCl on tRNA aminoacylation are presented as well. Under some conditions, e.g. at low pH or high salt concentration, lupin valyl-tRNA and seryl-tRNA synthetase are active exclusively in ATP-PPi exchange reaction.  相似文献   

11.
The translational efficiency of tRNA is a property of the anticodon arm   总被引:10,自引:0,他引:10  
We have reciprocally transplanted the anticodon arm sequences of a set of amber suppressor tRNA genes, using recombinant DNA techniques. By this means, a very efficient suppressor may be converted to a poor one, and the poorest tRNA to the efficiency of the best one. In tRNA molecules of normal 2 degrees and 3 degrees structure, the suppressor efficiencies of different composite tRNAs having the same anticodon arm sequence are approximately the same. Large numbers of simultaneous changes throughout the rest of the molecule do not affect the efficiency. Selective nucleotide modification as a result of varied anticodon arm sequences cannot explain these efficiencies. Efficiencies are also unlikely to differ because of selective aminoacylation. Measurement of in vivo tRNA shows, however, that tRNA levels do vary if the anticodon arm sequence is changed. If tRNA levels are normalized, the anticodon arm effect on the translational efficiency remains. Therefore, different anticodon arms, all of normal secondary structure, are not equivalent in translation. The most efficient sequences in this series resemble those found in natural tRNAs associated with similar anticodons, as is proposed in the extended anticodon theory (Yarus, M. (1982) Science 218, 646-652). These molecules also provide some information on the specificity of nucleotide modification enzymes and on determinants of the steady-state tRNA level.  相似文献   

12.
Recently we have sequenced cDNA of plant glutaminyl-tRNA synthetase (GlnRS) from Lupinus luteus. At the N terminal part the protein contains a lysine rich polypeptide (KPKKKKEK), which is identical to a nuclear localization signal (NLS). In this paper we showed that two synthetic peptides (20 and 8 amino acids long), which were derived from lupin GlnRS containing the NLS sequence interact with DNA, but one of them (8aa long) changing its conformation from the B to the Z form. This observation clearly suggests that the presence of the NLS polypeptide in a leader sequence of GlnRS is required not only for protein transport into nucleus but also for regulation of a gene expression. This is the first report suggesting a role of the NLS signal peptide in structural changes of DNA.  相似文献   

13.
Molecular cloning of lupin leghemoglobin cDNA   总被引:3,自引:0,他引:3  
Poly(A)+RNA isolated from root nodules of yellow lupin (Lupinus luteus, var. Ventus) has been used as a template for the construction of a cDNA library. The ds cDNA was synthesized and inserted into the Hind III site of plasmid pBR 322 using synthetic Hind III linkers. Clones containing sequences specific for nodules were selected by differential colony hybridization using32P-labeled cDNA synthesized either from nodule poly(A)+RNA or from poly(A)+RNA of uninfected root as probes. Among the recombinant plasmids, the cDNA gene for leghemoglobin was identified. The protein structure derived from its nucleotide sequence was consistent with known amino acid sequence of lupin Lb II. The cloned lupin Lb cDNA hybridized to poly(A)+RNA from nodules only, which is in accordance with the general concept, that leghemoglobin is expressed exclusively in nodules.  相似文献   

14.
A method for purification of tRNA nucleotidyltransferase from Lupinus luteus L. seeds on a preparative scale is presented. This involved ammonium sulfate fractionation and chromatography on DEAE-cellulose, hydroxylapatite, and QAE-Sephadex A-50. The final enzyme prepartion was apparently homogeneous and a 2000-fold purification was achieved. Data presented suggest the existence of only one form of tRNA nucleotidyltransferase in dry lupin seeds.  相似文献   

15.
16.
Two methionine transfer RNA (tRNA) genes were identified in the maize mitochondrial genome by nucleotide sequence analysis. One tRNA gene was similar in nucleotide sequence and secondary structure to the initiator methionine tRNA genes of eubacteria and higher plant chloroplast genomes. This tRNA gene also had extensive nucleotide homology (99%) with an initiator methionine tRNA gene described for the wheat mitochondrial genome. The other methionine tRNA gene sequence was distinct and more closely resembled an elongator methionine tRNA.  相似文献   

17.
During germination of lupin seeds, the levels of in-vivo tRNA aminoacylation increase in different ways, depending on the species of tRNA. Column chromatography of tRNA on reverse-phase-chromatography (RPC-5) has shown the presence of 4 peaks of isoleucyl-tRNA, 5 of leucyl-tRNA, 5 of lysyl-tRNA, 2 of tyrosyl-tRNA, and 4 of valyl-tRNA. Cochromatography of periodate treated and control tRNA preparations, labeled with radioactive amino acids, indicates identical aminoacylation in vivo of isoaccepting tRNAs during plant development. One isoacceptor of isoleucine tRNA changes its elution profile after periodate treatment.Abbreviation RPC-5 reverse-phase-chromatography  相似文献   

18.
A phosphatase cleaving the pyrophosphate bond in diphosphonucleotides and phosphodiester bond in various phosphodiesters (pH optimum at 6.25) was purified from yellow lupin (Lupinus luteus L.) seeds. The enzyme is 75 kDa monomeric glycoprotein (pI=6.4) with 4.4% of carbohydrate (mannose, N-acetylglucosamine, fucose and xylose). Analysis of its partial amino acid sequence (8 peptides, 101 amino acid residues) together with no divalent cation requirements for catalysis points out that the purified enzyme is different from known plant pyrophosphate cleaving enzymes (apyrases and inorganic pyrophosphatases). Its physiological role could be related to a regulation of diphosphonucleotides level in plant metabolism.  相似文献   

19.
Mutations have been identified in Saccharomyces cerevisiae glycine tRNA genes that result in suppression of +1 frameshift mutations in glycine codons. Wild-type and suppressor alleles of genes encoding the two major glycine tRNAs, tRNA(GCC) and tRNA(UCC), were examined in this study. The genes were identified by genetic complementation and by hybridization to a yeast genomic library using purified tRNA probes. tRNA(UCC) is encoded by three genes, whereas approximately 15 genes encode tRNA(GCC). The frameshift suppressor genes suf1+, suf4+ and suf6+ were shown to encode the wild-type tRNA(UCC) tRNA. The suf1+ and suf4+ genes were identical in DNA sequence, whereas the suf6+ gene, whose DNA sequence was not determined, was shown by a hybridization experiment to encode tRNA(UCC). The ultraviolet light-induced SU F1-1 and spontaneous SU F4-1 suppressor mutations were each shown to differ from wild-type at two positions in the anticodon, including a +1 base-pair insertion and a base-pair substitution. These changes resulted in a CCCC four-base anticodon rather than the CCU three-base anticodon found in wild-type. The RNA sequence of tRNA(UCC) was shown to contain a modified uridine in the wobble position. Mutant tRNA(CCCC) isolated from a SU F1-1 strain lacked this modification. Three unlinked genes that encode wild-type tRNA(GCC), suf20+, trn2, and suf17+, were identical in DNA sequence to the previously described suf16+ frameshift suppressor gene. Spontaneous suppressor mutations at the SU F20 and SU F17 loci were analyzed. The SU F20-2 suppressor allele contained a CCCC anticodon. This allele was derived in two serial selections through two independent mutational events, a +1 base insertion and a base substitution in the anticodon. Presumably, the original suppressor allele, SU F20-1, contained the single base insertion. The SU F17-1 suppressor allele also contained a CCCC anticodon resulting from two mutations, a +1 insertion and a base substitution. However, this allele contained an additional base substitution at position 33 adjacent to the 5' side of the four-base anticodon. The possible origin and significance of multiple mutations leading to frameshift suppression is discussed.  相似文献   

20.
We describe the cloning and the DNA sequence of the Escherichia coli supH missense suppressor and of the supD60(Am) suppressor genes. supH is a mutant form of serU which codes for tRNASer2. The supH coding sequence differs from the wild-type sequence by a single nucleotide change which corresponds to the middle position of the anticodon. The CGA anticodon of wild-type tRNA and CUA anticodon of supD tRNA is changed to CAA in supH tRNA, which is expected to recognize the UUG leucine codon. We propose that the supH suppressor causes the insertion of serine in response to this codon. The temperature sensitivity caused by supH may be due to a conformation of the CAA anticodon in the supH tRNASer that is slightly different than that in the corresponding tRNALeu species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号