首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidate phosphatase (EC 3.1.3.4Y was purified 15- to 20-fold from the soluble fraction of rat liver. The purification procedure involved calcium phosphate gel adsorption and elution, ammonium sulfact precipitation, and molecular-sieve chromatography. For the enzyme assay, and aqueous dispersion of phosphatidate, rather than "membrane-bound" phosphatidate, was used as substrate. The partially purified enzyme depends almost entirely on the presence of Mg2+ for its activity. Morover, the activity of the enzyme is stimulated by phosphatidylcholine. The enzyme exhibits a high substrate specificity for phosphatidate. The apparent Km for phosphatidate is approximately 0.05 mM. The optimum pH is between 7.4 and 7.6. The enzyme is inhibited by fluoride and by p-chloromercuribenzoate. The subcellular distribution of phosphatidate phosphatase in rat liver was studied by assaying the activity of the enzyme in the presence of Mg2+ and phosphatidylcholine. In contrast ot the results of previous studies, most of the enzyme activity was found in the soluble fraction.  相似文献   

2.
Using an aqueous dispersion of [32P]phosphatidate as substrate we detected phosphatidate phosphatase (EC 3.1.3.4) activity in a cell-free extract of the yeast, Saccharomyces cerevisiae. The activity was found in both the membrane and the soluble fractions. The enzyme was purified from the soluble fraction about 600-fold. The purification procedure involved (NH4)2SO4 fractionation, poly(ethylene glycol) 6000 fractionation and column chromatography on DEAE-Sepharose, Sephadex G-100 and Blue-Sepharose. The purified enzyme almost absolutely required Mg2+ for activity. The molecular weight of the enzyme was estimated by analytical gel filtration on Sephadex G-100 to be approx. 75000. The enzyme was highly specific for phosphatidate. The apparent Km for phosphatidate was approx. 0.05 mM. The optimum pH was between 7.0 and 8.0.  相似文献   

3.
1. Microsomal membranes from rat liver were incubated with ATP, CoA, Mg2+, [14C]palmitate, F- and sn-glycerol 3-phosphate in order to label them with [14C]phosphatidate. These membranes were isolated and used in a second incubation in which [3H]CTP was present, and the simultaneous synthesis of [14C]diacylglycerol and [3H]CDP-diacylglycerol was measured. 2. The addition of phosphatidate phosphohydrolase, which had been partially purified from the particle-free supernatant, supplemented the activity of the endogenous phosphohydrolase, but it did not alter the rate of CDP-diacylglycerol formation. 3. Adding EDTA inhibited phosphatidate cytidylyl-transferase activity and stimulated the activity of the phosphohydrolases by removing excess of Mg2+. 4. Increasing the concentration of Mg2+, norfenfluramine or chlorpromazine in the assay system stimulated cytidylyltransferase activity, but decreased the activities of both phosphohydrolases. 5. The mechanism for the stimulation of cytidylyl=transferase activity by the cationic drugs and Mg2+ was investigated with emulsions of phosphatidate and the microsomal fraction of rat liver. 6. There was a threshold concentration of about 5mM-MgCl2 below which no cytidylyltransferase activity was detected in the presence or absence of norfenfluramine. Just above this threshold concentration norfenfluramine stimulated cytidylyltransferase activity, but this stimulation disappeared as the Mg2+ concentration was raised to its optimum of 20mM. Norfenfluramine therefore partially replaced the bivalent-cation requirement. 7. At 30 mM-MgCl2 amphiphilic cationic drugs inhibited cytidylyltransferase activity at relatively high concentrations in a non-competitive manner with respect to phosphatidate. 8. The implications of these results are discussed with respect to the regulation of the synthesis of the acidic phospholipids compared with the synthesis of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol.  相似文献   

4.
The properties and subcellular distribution of phosphatidate phosphatase (EC 3.1.3.4) from adipose tissue have been investigated. The enzyme was assayed using both aqueous phosphatidate and membrane-bound phosphatidate as substrates. When measured with aqueous substrate, activity was detected in the mitochondria, the microsomes, and the soluble fraction. Mg(2+) at low concentration stimulated the phosphatidate phosphatase from soluble and microsomal fractions but had no effect on the mitochondrial phosphatidate phosphatase. At higher concentration Mg(2+) was inhibitory. In the presence of Mg(2+), the phosphatidate phosphatase from soluble and microsomal fractions was active against membrane-bound phosphatidate. No activity was demonstrated with membrane-bound substrate in the absence of Mg(2+). Mitochondria did not contain activity toward the membrane-bound substrate. The rate of utilization of aqueous phosphatidate was always higher than that of membrane-bound substrate. These results indicate that there are at least two different phosphatidate phosphatases in adipose tissue.  相似文献   

5.
The effect of polyamines (spermine, spermidine and putrescine) on the Mg2+-dependent phosphatidate phosphohydrolase was investigated. Phosphatidate phosphohydrolase activity was measured in the presence of aqueous dispersed phosphatidate as substrate, and the release of inorganic phosphate was taken as a measure of phosphatidate phosphohydrolase activity. In the presence of various polyamines there was activation of the Mg2+-dependent phosphatidate phosphohydrolase activity. Under this condition, the Km of enzyme towards phosphatidase decreased from 1.6 x 10(-4) to 9.8 x 10(-5) M and the Mg2+ requirement decreased from 5 to 0.5 mM. These polyvalent cations did not replace Mg2+, but potentiate the phosphohydrolase activity in the presence of Mg2+. The activation of Mg2+-dependent phosphatidate phosphohydrolase activity by polyamines was observed in the presence of 3-sn-phosphatidylcholine, suggesting that these modulators of phosphatidate phosphohydrolase activity may be acting through different mechanisms. These studies demonstrate that polyamines may be important regulators of Mg2+-dependent phosphatidate phosphohydrolase activity in adipose tissue.  相似文献   

6.
1. A rapid extraction and purification scheme was designed for the recovery of [3H]diacylglycerol formed during the assay of phosphatidate phosphohydrolase. 2. The importance of removing polyvalent cations, particularly Ca2+, from the phosphatidate and other reagents used in the assay of the phosphohydrolase activity was demonstrated. This was achieved mainly by treating the phosphatidate with a chelating resin and by adding 1 mM-EGTA and 1 mM-EDTA to the assays. 3. The activity of the phosphohydrolase in dialysed samples of the soluble and microsomal fractions of rat liver was very low. 4. Addition of optimum concentrations of MgCl2 resulted in a 110-167-fold stimulation in activity. 5. CaCl2 was also able to stimulate phosphohydrolase activity, but to a much smaller extent than MgCl2. 6. Chlorpromazine, an amphiphilic cation, inhibited the reaction when it was measured in these experiments by using a mixed emulsion of phosphatidylcholine and phosphatidate at pH 7.4. 7. Microsomal fractions that were preincubated with albumin contained very low activities of the Mg2+-dependent phosphohydrolase. When these were then incubated with the soluble fraction in the presence of oleate, the soluble phosphohydrolase attached to the microsomal membranes, and it retained its high dependency on Mg2+.  相似文献   

7.
Lung contains both Mg2+-dependent and Mg2+-independent phosphatidate phosphohydrolase activities. Addition of Triton X-100 (0.5%) or chlorpromazine (1 mM) leads to a marked increase in the total phosphatidate phosphohydrolase activity in rat lung microsomes (microsomal fractions), but a decrease in the Mg2+-dependent activity. These observations suggest that the Mg2+-independent activity is stimulated, whereas the Mg2+-dependent activity is inhibited. However, the possibility exists that Triton X-100 could stimulate the Mg2+-dependent enzymic activity in an Mg2+-independent manner. In addition, the positively charged amphiphilic drug could be replacing the enzyme's requirement for Mg2+. These two possibilities were examined by using subcellular fractions in which the Mg2+-dependent phosphatidate phosphohydrolase had been abolished by heat treatment at 55 degrees C for 15 min. Heat treatment does not affect the microsomal Mg2+-independent phosphohydrolase to any great extent. Since the 6-8-fold stimulations due to Triton X-100 and chlorpromazine are retained after heat treatment of this fraction, the Mg2+-independent activity must be involved. Addition of Triton X-100 and chlorpromazine to cytosol virtually abolishes the Mg2+-dependent phosphatidate phosphohydrolase activity and decreases the Mg2+-independent activity by half. Heat treatment also abolishes the Mg2+-dependent activity and decreases the Mg2+-independent activity by over half. The Mg2+-independent phosphatidate phosphohydrolase activity remaining after heat treatment was not affected by Triton X-100 or chlorpromazine. These studies demonstrate that Triton X-100 and chlorpromazine specifically stimulate the heat-stable Mg2+-independent phosphatidate phosphohydrolase activity in rat lung microsomes. In contrast, the heat-labile Mg2+-independent phosphatidate phosphohydrolase activities in cytosol are inhibited by these reagents. Triton X-100 and chlorpromazine inhibit the Mg2+-dependent phosphatidate phosphohydrolase activities in both rat lung microsomes and cytosol. These results are consistent with the view that a single Mg2+-dependent phosphatidate phosphohydrolase present in both microsomes and cytosol is specifically involved in glycerolipid metabolism.  相似文献   

8.
1. Phosphatidate phosphohydrolase from the particle-free supernatant of rat liver was assayed by using emulsions of phosphatidate as substrate. 2. The inhibition of the phosphohydrolase by chlorpromazine was of a competitive type with respect to phosphatidate. The potency of various amphiphilic cationic drugs as inhibitors of this reaction was related to their partition coefficients into a phosphatidate emulsion. 3. The effect of chlorpromazine on the phosphohydrolase activity was complementary rather than antagonistic towards Mg2+. Chlorpromazine stimulated the phosphohydrolase activity in the absence of added Mg2+ and was able to replace the requirement for Mg2+. However, at optimum concentrations of Mg2+, chlorpromazine inhibited the reaction, as did Ca2+. The phosphohydrolase activity was also stimulated by Co2+ and to a lesser extent by Mn2+, Fe2+, Fe3+, Ca2+, spermine and spermidine when Mg2+ was not added to the assays. 4. It is concluded that the inhibition of phosphatidate phosphohydrolase by amphiphilic cations can largely be explained by the interaction of these compounds with phosphatidate, which changes the physical properties of the lipid, making it less available for conversion into diacylglycerol. 5. The implications of these results to the effects of amphiphilic cations in redirecting glycerolipid synthesis at the level of phosphatidate are discussed.  相似文献   

9.
Native soluble and particulate guanylate cyclase from several rat tissues preferred Mn2+ to Mg2+ as the sole cation cofactor. Wtih 4mM cation, activities with Mg2+ were less than 25% of the activities with Mn2+. The 1 mM NaN3 markedly increased the activity of soluble and particulate preparations from rat liver. Wtih NaN3 activation guanylate cyclase activities wite similar with Mn2+ and Mg2+. Co2+ was partially effective as a cofactor in the presence of NaN3, while Ca2+ was a poor cation with or without NaN3. Activities with Ba, Cu2+, or Zn2+ were not detectable without or with 1 mM NaN3. With soluble liver enzyme both manganese and magnesium activities were dependent upon excess Mn2+ or Mg2+ at a fixed MnGTP or MgGTP concentration of 0.4 mm; apparent Km values for excess Mn2+ and Mg2+ were 0.3 and 0.24 mM, respectively. After NaN3 activation, the activity was less dependent upon free Mn2+ and retained its dependence for free Mg2+, at 0.4 mM MgGTP the apparent Km for excess Mg2+ was 0.3 mM. The activity of soluble liver guanylate cyclase assayed with Mn2+ or Mg2+ was increased with Ca2+. After NaN3 activiation, Ca2+ had no effect or was somewhat inhibitory with either Mn2+. After NaN activation, Ca2+ had no effect or was somewhat inhibitory with either Mn2+ or Mg2+. The stimulatory effect of NaN2 on Mn2+-and Mg2+-dependent guanylate cyclase activity from liver or cerebral cortex supernatant fractions required the presence of the sodium azide-activator factor. With partially purified soluble liver guanylate cyclase and azide-activator factor, the concentration (1 mjM) of NaN3 that gave half-maximal activation with Mn2+ or Mg2+ was imilar. Thus, under some conditions guanylate cyclase can effectively use Mg2+ as a sole cation cofactor.  相似文献   

10.
An assay of pulmonary phosphatidate phosphohydrolase activity has been developed that employs a chemically defined liposome substrate of equimolar phosphatidate and phosphatidylcholine. Enzyme assays employing this substrate resolved two distinct activities based upon their requirements for Mg2+. Assays were performed in the presence and absence of 2 mM MgCl2 and the Mg2+-dependent phosphatidate phosphohydrolase activity calculated by difference. The Mg2+-independent phosphatase activity resembled that found using aqueous dispersions of phosphatidate (PAaq). Approximately 90% of the Mg2+-dependent phosphatidate phosphohydrolase activity was recovered in the cytosol and the remainder was associated with the microsomal fraction. The Mg2+-dependent phosphatidate phosphohydrolase activity has kinetic parameters of Km = 55 microM, Vmax = 1.6 nmol/min/mg protein for the microsomal fraction, and Km = 215 microM, Vmax = 6.8 nmol/min/mg protein for the cytosolic fraction. These parameters resembled those found using the microsomal membrane-bound (PAmb) substrate. In addition, the pH optima and sensitivity to detergents and thermal inactivation are equal to those for the PAmb-dependent phosphatidate phosphohydrolase activity. In the course of these studies the microsomal and cytosolic activities were qualitatively equal, indicative of a single enzyme in two subcellular locations. In conclusion, the assay of Mg2+-dependent phosphatidate phosphohydrolase activity measured using equimolar phosphatidate and phosphatidylcholine liposomes is equivalent to that activity previously described using microsomal membrane-bound substrate. However, the chemically-defined system provides a more simplified starting point for further studies on this important enzyme.  相似文献   

11.
1. The membrane-bound phosphatidate-dependent phosphatidic acid phosphatase activity of rat lung has been investigated in cytosol and microsomal fractions using as a substrate [32P]phosphatidate bound to heat inactivated rat liver microsomes. Both activities demonstrated broad pH optima with a maximum of 7.4--8 for the cytosol and a maximum of 6.5--7.5 with microsomal preparations. 2. At low concentrations (0--5 mM) Mg2+ produced a slight stimulation of the cytosol activity but at higher concentrations an inhibition was observed. Low concentrations (1.0--2.0 mM) of EDTA abolished the cytosol activity and reduced the microsomal activity to half. In both cases, the addition of Mg2+ in the presence of EDTA resulted in an activity which was more than 2-fold greater than that observed in the absence of chelator or divalent cation. 3. The cytosol activity was relatively resistant to the addition of ionic and nonionic detergents. In general, the addition of a number of phosphate esters increased rather than decreased the release of 32Pi, indicating a relative specificity for phosphate groups associated with a hydrophobic environment. The addition of aqueous dispersions of phosphatidate, lysophosphatidic acid or phosphatidylglycerophosphate markedly reduced the hydrolysis of membrane-bound [32P]phosphatidate. The cytosol activity was slightly inhibited by the addition of phosphatidylcholine. 4. In an attempt to estimate the relative contributions of the cytosol and microsomal activities in vivo, these activities were assayed using [32P]phosphatidate endogenously generated on rat lung microsomes. With the 32P-labelled microsomes, the hydrolysis remained linear over the 45 min of the experiment. Addition of high speed supernatant produced a rapid release of 32Pi during the first 10 min followed by a more gradual release similar to that oberved with the microsomes alone. The cytosol activity remained greater than the microsomal activity at all times studied. 5. When [14C]phosphatidate-labelled microsomes were incubated in the presence of nonradioactive CDPcholine, the addition of cytosol markedly stimulated the incorporation of radioactivity into phosphatidylcholine. This observation suggests that the phosphatidic acid phosphatase activity associated with the cytosol has a role in phosphatidylcholine (and presumably surfactant) biosynthesis in rat lung.  相似文献   

12.
Nuclei of rat ventral prostate have been demonstrated to possess a protein phosphatase activity utilizing 32P-labelled, lysine-rich histone (calf thymus) as the phosphoprotein substrate. This phosphatase has a pH optimum of 7.1 and was stimulated by the sulfhydryl protective agents dithiothreitol and 2-mercaptoethanol. This nuclear protein phosphatase did not appear to require divalent cations; rather, small inhibitions of activity were found in the presence of 2.4 mM Mg2+, Mn2+, and Ca2+. Divalent cations such as Zn2+ or Cu2+ were found to be much stronger inhibitors, giving about 80% inhibition at 1 mM. Monovalent cations were also found to inhibit the histone phosphatase, e.g., 43% at 200 mM NaCl. Ammonium molybdate did not influence the enzyme activity whereas ADP and ATP reduced it by 72 and 82% respectively at 1 mM. There was no change in activity of the histone phosphatase up to 96 h post-orchiectomy when specific activity was based per unit of nuclear protein. However, a small decrease is noted if specific activity is expressed per unit of nuclear DNA (19% at 48 h and 36% at 96 h orchiectomy). This difference reflects the decreased nuclear protein content of the prostate observed following castration. Our data suggest that the decline in prostatic nuclear histone phosphorylation observed following orchiectomy is not due to increased phosphatase activity.  相似文献   

13.
Estrogen-induced chick oviduct differentiation is accompanied by an increased capacity for protein glycosylation. A portion of this increase has been attributed to increased levels of dolichyl phosphate (Dol-P). Hormone withdrawal leads to an apparent decrease in Dol-P. Dol-P metabolism in the oviduct has been studied, and one of the enzymes having a direct effect on Dol-P, Dol-P phosphatase is herein described. Dol-P phosphatase has a pH optimum of 6.0, does not require a metal ion, and is inhibited by Mn2+ at concentrations greater than 5 mM. Inhibitor studies indicate that Dol-P hydrolysis is inhibited by polyprenyl phosphates having both saturated and unsaturated alpha-isoprene residues, but not by the corresponding alcohols. The enzyme is also inhibited by phosphatidic acid unless 2 mM Mn2+ is included in the incubations. Under these conditions Dol-P hydrolysis is only slightly inhibited (less than 10%), but phosphatidate inhibition is totally eliminated. Oviduct membranes also possess phosphatidate phosphatase, but this enzyme is distinct from Dol-P phosphatase based on thermolability, metal ion sensitivity, and sulfhydryl reagent sensitivity. Studies of enzyme activity in response to estrogen treatment reveal that both Dol-P phosphatase and phosphatidate phosphatase have maximal specific activity early in the differentiation process (peaking after 3 days of treatment), and low specific activity in fully differentiated oviducts, including laying hen oviduct. Hormone withdrawal elicits a small increase in specific activity of both phosphatases. The hormone effects suggest that Dol-P phosphatase may be a biosynthetic enzyme.  相似文献   

14.
The purpose of this work is to compare the properties of phosphatidate phosphatase (L-alpha-phosphatidate phosphohydrolase, EC 3.1.3.4) in fetal and adult rat lung and to establish the developmental profile of activity measured under optimal conditions. The maximal pH of 6.0--7.0 and the inhibition by fluoride, Ca2+ and detergents were simialr for both adult and fetal. Phosphatidate phosphohydrolase activity was located in both mitochondria and microsomes. The localizations of marker enzymes indicated that the activity in these subfractions was not a result of cross contaminations. Very low activity was detected in the supernatant fraction and no Mg2+ requirement was demonstrable. The activity in the particulate fraction was about 50% of the adult from 18 day gestation until birth. Following birth, the activity rapidly increased to adult levels. Dipalmitoyl, dioleoyl and diacyl glycerol 3-phosphates are all utilized well as substrates. 1,2-dipalmitoyl-sn-glycerol 3-phosphate was hydrolyzed faster under maximal conditions. The velocity-substrate curves tended to be sigmoidal, particularly when 1,2-dipalmitoyl-sn-glycerol 3-phosphate was the substrate. Estimated apparent Km values of 0.02--0.03 mM were obtained for fetal and adult preparations.  相似文献   

15.
1. The properties of the aqueously dispersed phosphatidate-dependent phosphatidic acid phosphatase (EC 3.1.3.4) activities of rat lung have been studied in microsomal and cytosol preparations and compared with the properties of the membrane-bound phosphatidate-dependent activities. 2. The microsomal phosphatidic acid phosphatase displayed a prominent pH optimum at 6.5 with a minor peak which varied between 7.5--8 in different experiments. With the cytosol, the major activity was at the higher pH (7.5--8.0) but a distinct optimum was also observed at pH 6.0--6.5. With the membrane-bound substrate, a single broad optimum was observed between pH 7.4 and 8.0 with the cytosol and 6.5--7.5 with the microsomal fraction. 3. Subcellular fractionation studies revealed that the microsomal fraction possessed the greatest proportion of the total phosphatidic acid phosphatase activity and the highest relative specific activity. However, studies with marker enzymes indicated that the aqueously dispersed phosphatidate-dependent activity could be present in plasma membrane, lysosomes and osmiophilic lamellar bodies as well as in the endoplasmic reticulum. 4. The aqueously dispersed phosphatidic acid-dependent activities present in the microsomal and supernatant fractions were inhibited by Ca2+, Mn2+, F- and by high concentrations of Mg2+. In contrast to the membrane-bound phosphatidate-dependent activities, there was little Mg2+ stimulation and only a very slight inhibitory effect was noted with EDTA. A small EDTA-dependent Mg2+ stimulation could be observed with the microsomal fraction but only at the lower pH optimum (6.5). 5. The presence of a number of phosphate esters tended to stimulate rather than inhibit the microsomal activity, indicating that the hydrolase is relatively specific for lipid substrates. Marked inhibitions were noted with lysophosphatidic acid and phosphatidylglycerol phosphate. Phosphatidylcholine produced a slight inhibition. 6. The results indicate that the bulk of the aqueously dispersed phosphatidate-dependent phosphatidic acid phosphatase activities of rat lung microsomes and cytosol is not related to the activities observed with membrane-bound phosphatidate. The Mg2+-dependent hydrolase activities may be synonymous. However, unequivocal conclusions will only be possible when the polypeptide or polypeptides responsible for these activities can be purified.  相似文献   

16.
The effects of three cationic amphiphilic drugs on rat brain cytosolic phosphatidate phosphohydrolase and their mechanisms of action were studied utilizing membrane-bound, emulsified, and emulsified sonicated phosphatidate as substrates. With the membrane-bound substrate, chlorpromazine, desmethylimipramine, and propranolol inhibited the activity in a dose-dependent fashion with an IC50 of 30-50 microM. In the presence of the emulsified substrate, chlorpromazine was a more potent inhibitor than desmethylimipramine or propranolol but 200 microM was needed for 50% inhibition of activity. Addition of heat-inactivated microsomes to the emulsified substrate, to simulate the conditions with the membrane-bound substrate, did not alter this value. Both Mg2+ and Ca2+ stimulated the enzyme activity but only Ca2+ counteracted the effect of chlorpromazine. Kinetic studies indicate that chlorpromazine acts as a noncompetitive inhibitor of the enzyme. Emulsified sonicated phosphatidate was a good substrate at low (less than 10 microM) concentrations. It was a poor substrate at 1 mM, but at this concentration chlorpromazine stimulated the activity instead of inhibiting. This drug altered the integrity of phosphatidate vesicle membranes as visualized by electron microscopy. The different results obtained with the three types of substrate indicate the importance of the configuration of phosphatidate for the expression of enzyme activity and for its susceptibility to the action of cationic amphiphilic drugs.  相似文献   

17.
D-myo-Inositol 1,4,5-trisphosphate has been previously demonstrated to act as a second messenger for the hormonal mobilization of intracellular calcium in rat liver. In this study, the breakdown of D-myo-inositol 1,4,5-trisphosphate by a phosphatase activity was characterized. Using partially purified subcellular fractions, it was found that D-myo-inositol 1,4,5-trisphosphate phosphatase (I-P3ase) specific activity was highest in the plasma membrane fraction, while D-myo-inositol 1,4-bisphosphate phosphatase specific activity was highest in the cytosolic and microsomal fractions. The plasma membrane I-P3ase was Mg2+-dependent with optimal activity observed at 0.5-1.5 mM free Mg2+. The enzyme had a neutral pH optimum, suggesting that it was neither an acid nor alkaline phosphatase. Neither LiCl nor NaF inhibited the I-P3ase activity. However, both L-cysteine and dithiothreitol stimulated the activity 2-fold. Spermine (2.0 mM) inhibited the I-P3ase activity by 50%, while putrescine and spermidine had little or no effect.  相似文献   

18.
Microsomal phosphatidate phosphatase in maturing safflower seeds   总被引:4,自引:0,他引:4       下载免费PDF全文
An assay system comprising sodium phosphatidate, phosphatidylcholine, and bovine serum albumin has been developed for the reproducible determination of phosphatidate phosphatase activity in maturing seeds of safflower (Carthamus tinctorius L.). The activity was detected in both membrane and soluble fractions, and the microsomal phosphatidate phosphatase was characterized. The optimum pH for Pi release was 6.7, and the activity depended on the concentration of Mg2+. Phosphatidylcholine and bovine serum albumin stimulated the phosphatase reaction. This phosphatase was highly specific for phosphatidate; lysophosphatidate, and water-soluble phosphate esters did not serve as substrate. The specific activity was approximately 20 nanomoles per minute per milligram of protein, which was close to that of glycerol-phosphate acyltransferase and higher than that of diacylglycerol acyltransferase. Furthermore, the activity per seed was enough to account for the rate of triacylglycerol accumulation in vivo. The step of diacylglycerol formation by phosphatidate phosphatase does not appear to be rate-limiting for triacylglycerol synthesis during seed maturation.  相似文献   

19.
Incubation of A549 cells with digitonin for 4 min resulted in the release of over 90% of the lactate dehydrogenase activity into the medium. Approximately 80% of the Mg2+-dependent but only 7% of the Mg2+-independent phosphatidate phosphohydrolase activity was released in the presence of digitonin. Pretreatment of the cells with oleate reduced the efflux of the Mg2+-dependent phosphatidate phosphohydrolase activity to approximately 5% of total. Oleate did not affect the release of lactate dehydrogenase or the release of the Mg2+-independent phosphohydrolase activity. Incubation of A549 cells with [3H]oleate for 60 min led to incorporation of the label into phosphatidic acid, phosphatidylethanolamine, phosphatidylcholine, diacylglycerol, monoacylglycerol, and triacylglycerol, in ascending order. When the level of exogenous oleate was increased to over 2.0 mM, there was a marked increase in the incorporation into monoacylglycerol and diacylglycerol. Only small amounts of radioactivity were associated with phosphatidic acid. Time course studies revealed that the amount of radioactive phosphatidate remained low throughout the incubation period. These investigations were interpreted to indicate that free fatty acids can promote the translocation of the Mg2+-dependent phosphatidate phosphohydrolase activity from cytosol to membrane fractions. This translocation could, at least theoretically, function to facilitate the metabolism of increased amounts of phosphatidate.  相似文献   

20.
Rat lung microsomes washed with increasing concentrations of NaCl show a displacement of protein from microsomes to the wash supernatant. Among the proteins removed from the microsomal surface was the Mg2+-dependent phosphatidate phosphohydrolase, while the Mg2+-independent activity remained associated with the microsomes. The Mg2+-dependent activity could be quantitatively assayed in the wash supernatant. Microsomes washed with increasing concentrations of NaCl showed a progressive impairment in the synthesis of labelled neutral lipid and phosphatidylcholine from [14C]glycerol 3-phosphate with a concomitant increase in the labelling of phosphatidic acid. The impairment was sigmoidal and correlated highly with the decrease in Mg2+-dependent phosphatidate phosphohydrolase activity. When Mg2+-dependent phosphatidate phosphohydrolase from wash supernatant was incubated with microsomes previously washed with high salt concentrations, the labelling of neutral lipid and phosphatidylcholine was returned to control levels. Labelling of neutral lipids and phosphatidylcholine could be restored upon addition of a cytosolic Mg2+-dependent phosphatidate phosphohydrolase isolated by gel filtration. Mg2+-independent phosphatidate phosphohydrolase isolated from cytosol was incapable of restoring the labelling of neutral lipids and phosphatidylcholine. These findings confirm that the Mg2+-dependent phosphatidate phosphohydrolase of rat lung is involved in pulmonary glycerolipid biosynthesis. The role of the Mg2+-independent phosphatidate phosphohydrolase activity remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号