首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetanus toxin binds neuronal tissue prior to internalization and trafficking to the central nervous system. Binding of the carboxy-terminal 50 kDa HC fragment of tetanus toxin to polysialogangliosides is important for this initial cell binding step. Using the three-dimensional structure of HC, mutants were designed to investigate the role of individual residues in ganglioside binding. Mutant proteins were tested for binding to GT1b gangliosides, to primary motoneurons and for their ability to undergo retrograde transport in mice. Two classes of mutant were obtained: (i) those containing deletions in loop regions within the C-terminal beta-trefoil domain which showed greatly reduced ganglioside and cell binding and did not undergo retrograde transport and (ii) those that showed reduced ganglioside binding, but retained primary neuronal cell binding and retrograde transport. The second class included point mutants of Histidine-1293, previously implicated in GT1b binding. Our deletion analysis is entirely consistent with recent structural studies which have identified sugar-binding sites in the immediate vicinity of the residues identified by mutagenesis. These results demonstrate that ganglioside binding can be severely impaired without abolishing cell binding and intracellular trafficking of tetanus toxin.  相似文献   

2.
The non-toxin 50 kD C-terminus peptide of the heavy chain of tetanus H(c) contains the ganglioside binding domain of tetanus toxin (TTX). H(c) retains much of the capacity of tetanus toxin for binding internalization and transport by neurons. For this reason tetanus H(c) has been studied as a vector for delivery of therapeutic proteins to neurons. We directly compared H(c) and TTX in the capacity to bind and be internalized by neurons by ELISA. Primary cultures of dissociated fetal cortical neurons were incubated with equimolar amounts of TTX or H(c). Neuronal associated tetanus protein was 4-8 fold greater on a molar basis with tetanus toxin compared to H(c) (1 h incubation). This increase in neuronal tetanus protein was evident with incubation in concentrations from 0.1 microM to 2 microM. There were greater amounts of TTX delivered to the cultured cells at both 0 degrees C (representing membrane bound tetanus protein) and 37 degrees C (bound and internalized tetanus protein). Unlike H(c), TTX showed significant continued accumulation of protein with increasing incubation durations. Neuronal associated TTX increased 2-3 fold over incubation times ranging from 1 to 8 h. Tetanus toxin appears to be clearly superior to the ganglioside binding fragment (H(c)) in the capacity for neuronal binding and internalization. Atoxic tetanus proteins containing additional molecular domains as well as H(c) may be more suitable vectors for linkage with therapeutic proteins and delivery to neurons.  相似文献   

3.
A neuroblastoma cell line was assessed for its capacity to bind tetanus toxin (TT) by using immunofluorescence and flow cytometry to analyze cells on a single cell basis. A clone of Neuro 2a, N2AB-1, was shown to bind variable amounts of TT per cell and this binding could be saturated by increasing doses of the toxin. Toxin binding was specific for neuronal cells, as the non-neuronal cell line, C6 glioma, bound negligible amounts of toxin. Variability of immunofluorescence staining was due in part to the increase in size of N2AB-1 cells as they progress through the cell cycle as measured by cell surface densities of toxin binding and DNA levels by propidium iodide (PI) staining. When N2AB-1 cells were treated with exogenous gangliosides for 24 h, cells were induced to sprout neurites and cell growth was inhibited. Analysis of DNA histograms indicated that ganglioside treatment caused more cells to appear in G0G1 of the cell cycle than that seen for untreated controls. Upon cytometric analysis of TT binding to ganglioside treated cells, it was apparent that treatment stimulated all cells to bind TT in larger amounts per cell than that seen with untreated N2AB-1 cells. These data suggest that TT binding and, therefore, toxin receptors are constant in density throughout the cell cycle of these neuroblastoma cells and that exogenous gangliosides can cause differentiation followed by increased toxin binding.  相似文献   

4.
Cell line models have been widely used to investigate glioblastoma multiforme (GBM) pathobiology and in the development of targeted therapies. However, GBM tumours are molecularly heterogeneous and how cell lines can best model that diversity is unknown. In this report, we investigated gene expression profiles of three preclinical growth models of glioma cell lines, in vitro and in vivo as subcutaneous and intracerebral xenografts to examine which cell line model most resembles the clinical samples. Whole genome DNA microarrays were used to profile gene expression in a collection of 25 high-grade glioblastomas, and comparisons were made to profiles of cell lines under three different growth models. Hierarchical clustering revealed three molecular subtypes of the glioblastoma patient samples. Supervised learning algorithm, trained on glioma subtypes predicted the intracerebral cell line model with one glioma subtype (r = 0.68; 95% bootstrap CI -0.41, 0.46). Survival analysis of enriched gene sets (P < 0.05) revealed 19 biological categories (146 genes) belonging to neuronal, signal transduction, apoptosis- and glutamate-mediated neurotransmitter activation signals that are associated with poor prognosis in this glioma subclass. We validated the expression profiles of these gene categories in an independent cohort of patients from 'The Cancer Genome Atlas' project (r = 0.62, 95% bootstrap CI: -0.42, 0.43). We then used these data to select and inhibit a novel target (glutamate receptor) and showed that LY341595, a glutamate receptor specific antagonist, could prolong survival in intracerebral tumour-implanted mice in combination with irradiation, providing an in vivo cell line system of preclinical studies.  相似文献   

5.
The specific binding of glucocorticoid hormones has been studied in the normal diploid human cell line WI-38. These cells were found to contain high affinity glucocorticoid binding sites whose molecular specificity showed a high correlation to that required for the stimulation of cell growth. When hydrocortisone (HC) was selectively added to or removed from parasynchronously dividing cultures, we observed that HC -enhanced stimulation of cell growth was associated with the hormone's presence in the pre-DNA synthetic period of the cell cycle. Similarly, the specific binding of [3H]dexamethasone in stimulated quiescent cells was found to increase significantly in the pre-DNA synthetic period. The concentration of specific binding sites per cell achieved in stimulated cell cultures was found to decrease with increasing in vitro age. These results suggest that the stimulation of WI-38 cell proliferation by HC involves specific glucocorticoid receptors whose concentration per cell is under cell cycle control. The age-associated decrease in specific glucocorticoid binding sites may explain, in part, our previously observed loss of responsiveness to HC in aging cell cultures.  相似文献   

6.
Several neuronal disorders require drug treatment using drug delivery systems for specific delivery of the drugs for the targeted tissues, both at the peripheral and central nervous system levels. We describe a review of information currently available on the potential use of appropriate domains of clostridial neurotoxins, tetanus and botulinum, for effective drug delivery to neuronal systems. While both tetanus and botulinum neurotoxins are capable of delivering drugs the neuronal cells, tetanus neurotoxin is limited in clinical use because of general immunization of population against tetanus. Botulinum neurotoxin which is also being used as a therapeutic reagent has strong potential for drug delivery to nervous tissues.  相似文献   

7.
The entry of tetanus neurotoxin into neuronal cells proceeds through the initial binding of the toxin to gangliosides on the cell surface. The carboxyl-terminal fragment of the heavy chain of tetanus neurotoxin contains the ganglioside-binding site, which has not yet been fully characterized. The crystal structures of native H(C) and of H(C) soaked with carbohydrates reveal a number of binding sites and provide insight into the possible mode of ganglioside binding.  相似文献   

8.
Louch HA  Buczko ES  Woody MA  Venable RM  Vann WF 《Biochemistry》2002,41(46):13644-13652
The carboxyl-terminal region of the tetanus toxin heavy chain (H(C) fragment) binds to di- and trisialylgangliosides on neuronal cell membranes. To determine which amino acids in tetanus toxin are involved in ganglioside binding, homology modeling was performed using recently resolved X-ray crystallographic structures of the tetanus toxin H(C) fragment. On the basis of these analyses, two regions in tetanus toxin that are structurally homologous with the binding domains of other sialic acid and galactose-binding proteins were targeted for mutagenesis. Specific amino acids within these regions were altered using site-directed mutagenesis. The amino acid residue tryptophan 1288 was found to be critical for binding of the H(C) fragment to ganglioside GT1b. Docking of GD1b within this region of the toxin suggested that histidine 1270 and aspartate 1221 were within hydrogen bonding distance of the ganglioside. These two residues were mutagenized and found also to be important for the binding of the tetanus toxin H(C) fragment to ganglioside GT1b. In addition, the H(C) fragments mutagenized at these residues have reduced levels of binding to neurites of differentiated PC-12 cells. These studies indicate that the amino acids tryptophan 1288, histidine 1270, and aspartate 1221 are components of the GT1b binding site on the tetanus toxin H(C) fragment.  相似文献   

9.
Abstract— —Continuous cell lines, primary cell cultures derived from embryonic CNS, and homogenates made from adult and embryonic CNS were compared with respect to their lipid pattern and their ability to bind 125I-labelled tetanus toxin. In parallel experiments de novo synthesis of gangliosides in the cell lines was studied, using [14C]glucosamine as precursor. Of the total lipid only gangliosides were specifically labelled by [14C]glucosamine. The patterns of the de novo synthesized gangliosides corresponded to those present in the respective cells.
Pronounced binding of 125I-labelled toxin was only detectable in tissues containing long-chain gangliosides (ganglioside C which represents GDIb and GTI).
Accordingly, hybrid (neuroblastoma x glioma) cells, due to their lack of long-chain gangliosides, bound just-discernible amounts of labelled toxin. When previously exposed to gangliosides, their binding of tetanus toxin tremendously increased.
It was concluded that only the long-chain gangliosides in the neuronal cells are functionally involved in the binding of the tetanus toxin and that these acceptors of tetanus toxin can be transplanted.  相似文献   

10.
11.
Leptin and its receptors have been shown to be expressed in several tissues thus suggesting that this protein might be effective not only at the CNS level, but also peripherically. We demonstrated by RT-PCR analysis that leptin and its long isoform receptor are expressed in the mouse mammary epithelial cell line HC11, an in vitro cell model considered suitable to study the regulation of the functional development of the mammary epithelium. Furthermore, leptin secretion by HC11 cells was demonstrated by heterologous ELISA. Neither mRNA expression nor protein secretion changed throughout the different phases of differentiation of the cell line. Receptor mRNA was not modified when cells were induced to express beta-casein. High concentrations of leptin (between 1.5 and 15 microM) significantly (p<0.05) reduced cell growth as measured by MTT test. HC11 cells were transfected with pbetacCAT, a chimeric rat-beta casein gene promoter-CAT gene construct and CAT ELISA was used to determine gene expression. Leptin, from 1.5 nM to 15 microM, was shown to positively (p<0.05) influence beta-casein expression both in the presence or in the absence of prolactin. These data provide evidence that leptin, through its receptor, may be an important mediator in regulating mammary gland growth and development.  相似文献   

12.
Tetanus neurotoxin reaches the CNS by axonal retrograde transport and thus becomes inaccessible to current treatments. A possible strategy to improve current therapy for tetanus disease would be the vectorization of Fab'2 fragments, allowing their delivery into the CNS. The purpose of this study was to investigate whether after cationization anti-tetanus Fab'2 fragments are able to cross the blood-brain barrier, the first obstacle to CNS delivery. We used primary cocultures of bovine brain capillary endothelial cells and newborn rat astrocytes as an in vitro model to study the binding and transport of cationized Fab'2 (cFab'2) fragments across the brain endothelium. We first show that cationization does not alter Fab'2 affinity for tetanus toxin. Then we demonstrate that after cationization Fab'2 fragments are able to bind to the negative charges on the surface of endothelial cells and subsequently to be transported across the endothelial cell monolayer without any modification of affinity. Finally, using fluorescence microscopy, we show that cFab'2 fragments are transported through endocytotic vesicles. The present study demonstrates that cationization allows Fab'2 directed against tetanus toxin to be transported through brain endothelium by adsorptive-mediated transcytosis. We suggest that this vectorization way could be a promising delivery strategy for carrying anti-tetanic immunoglobulin fragments across the blood-brain barrier to improve tetanus treatment.  相似文献   

13.
Ganglioside expression and tetanus toxin binding were studied in the rat pheochromocytoma cell line PC12. Seven ganglioside species were readily detected in extracts of PC12 cells; two were identified as tri- and tetrasialogangliosides, which are common brain constituents but unusual components of neuronal cell lines. Carbohydrate composition, acid and enzyme hydrolyses, and mass spectral analysis revealed that the major species is GT 1b, a predominant mammalian brain ganglioside previously reported to support high affinity tetanus toxin binding (Rogers, T. B., and Snyder, S. H. (1981) J. Biol. Chem. 256, 2402-2407). Direct binding of 125I-tetanus toxin to PC12 gangliosides on TLC plates revealed selective binding to the tri- and tetrasialogangliosides. Radioiodinated toxin also bound with high affinity to intact PC12 cells or their isolated membranes. The binding affinity (Kd = 1.25 nM), density of receptors (Bmax = 238 pmol/mg of membrane protein), and dependence on pH, ionic strength, and temperature were similar to those previously reported for toxin binding to rat brain synaptic membranes. Differentiation of PC12 cells caused an increase in expression of the tri- and tetrasialogangliosides and a closely matched increase in tetanus toxin binding to cell membranes. These data provide evidence that complex gangliosides may act as tetanus toxin receptors, and demonstrate the utility of the PC12 cell line for studies of tetanus toxicity and complex ganglioside expression.  相似文献   

14.
Identification of the protein HC receptor   总被引:2,自引:0,他引:2  
In the present study, we demonstrate for the first time the presence of a specific receptor for protein HC on the surface of human cells using the human histiocytic lymphoma cell line U937. Cells treated for 4 days with the maturation inducer phorbol 12-myristate 13-acetate, were found to increase both the number of cells binding protein HC (76% higher than for untreated cells) and the expression of protein HC receptors. Protein HC bound to these cells in a specific and saturable manner. Scatchard analysis at 4 degrees C, using radioiodinated protein HC, indicated a single class of low-affinity receptor (Ka = 2-5 x 10(7) M-1) and 20,000-30,000 receptors per cell. Monoclonal antibodies against protein HC abrogated specific binding of this protein to U937. In contrast, monoclonal antibodies that did not react with protein HC (anti-LFA-1 alpha, anti-MO1 alpha) were without effect on the binding reaction.  相似文献   

15.
Retroviral vectors displaying functional antibody fragments.   总被引:16,自引:1,他引:15       下载免费PDF全文
We have made retrovirus particles displaying a functional antibody fragment. We fused the gene encoding an antibody fragment directed against a hapten with that encoding the viral envelope protein (Pr80env) of the ecotropic Moloney murine leukemia virus. The fusion gene was co-expressed in ecotropic retroviral packaging cells with a retroviral plasmid carrying the neomycin phosphotransferase gene (neo), and retroviral particles with specific hapten binding activities were recovered. Furthermore the hapten-binding particles were able to transfer the neo gene and the antibody-envelope fusion gene to mouse fibroblasts. In principle, the display of antibody fragments on the surface of recombinant retroviral particles could be used to target virus to cells for gene delivery, or to retain the virus in target tissues.  相似文献   

16.
Differentiated neuroblastoma x glioma hybrid cells NG 108-15 express on their surface specific binding sites for tetanus toxin. 450 sites/cell with a KD of 2 x 10(-11) M were found under "physiological" conditions of pH and salt concentrations. A Hill coefficient of 1.1 indicated noncooperative binding. Specific binding of 125I-toxin to its sites could be prevented either by preincubation of the toxin with a neutralizing monoclonal antibody or by pretreatment of the cells with neuraminidase (Vibrio cholerae). To quantify the action of tetanus toxin on the stimulated release of 14C activity from differentiated cells preincubated with [14C]choline, a new type of perfusion device was designed which could be filled with cells growing in monolayers on Cytodex-3 microbeads. Tetanus toxin inhibited the stimulated 14C release in a time- and dose-dependent manner. A greater than 50% inhibition was found after 2 h of incubation with 10(-12) M toxin. The inhibitory action of tetanus toxin could be prevented with a monoclonal antibody to the toxin or with neuraminidase treatment of the cells. These results suggest that the neuraminidase-sensitive 2 x 10(-11) KD receptors are the productive receptors for tetanus intoxication in differentiated NG 108-15 cells. The possible chemical composition of these receptors is discussed. Differentiated NG 108-15 cells provide a useful model in which picomolar tetanus concentrations produce both measurable saturable binding and inhibition of potassium-evoked, acetylcholine release under physiological conditions of pH and salt concentrations.  相似文献   

17.
18.
Huntington's disease (HD) is caused by an abnormal expansion of CAG trinucleotide repeats encoding polyglutamine (polyQ) in the first exon of the huntingtin (htt) gene. Despite considerable efforts, the pathogenesis of HD remains largely unclear due to a paucity of models that can reliably reproduce the pathological characteristics of HD. Here, we report a neuronal cell model of HD using the previously established tetracycline regulated rat neuroprogenitor cell line, HC2S2. Stable expression of enhanced green fluorescence protein tagged htt exon 1 (referred to as 28Q and 74Q, respectively) in the HC2S2 cells did not affect rapid neuronal differentiation. However, compared to the cells expressing wild type htt, the cell line expressing mutant htt showed an increase in time-dependent cell death and neuritic degeneration, and displayed increased vulnerability to oxidative stress. Increased protein aggregation during the process of neuronal aging or when the cells were exposed to oxidative stress reagents was detected in the cell line expressing 74Q but not in its counterpart. These results suggest that the neuroprogenitor cell lines mimic the major neuropathological characteristics of HD and may provide a useful tool for studying the neuropathogenesis of HD and for high throughput screening of therapeutic compounds.  相似文献   

19.
In recent years, targeted delivery systems have been used along with combinatorial therapy to decrease drug resistance and increase cancer therapy efficacy. The anti-proliferative effects of vitamin D3 (VD3) on cancerous cells, such as C6 glioma, with active hedgehog pathways raised the question as to whether pre-targeting C6 glioma cells with VD3-loaded nanoparticles (VD3NPs) can enhance the anti-tumor effects of doxorubicin, epirobicin, and docetaxel on this drug-resistant cell line. Here, studying at cellular, nuclear, protein, and gene levels we demonstrated that VD3NP-doxorubicin and VD3NP-epirobicin combinations increased the probability of chemotherapy/radiotherapy resistance and cancer stem cell (CSC) properties in C6 glioma significantly (P < 0.05), compared to doxorubicin and epirobicin alone. However, VD3NP-docetaxel combination may have the potential in sensitizing C6 cells to ionizing irradiation, but this combination also increased the CSC properties and the probability of drug resistance significantly (P < 0.05), compared to docetaxel alone. Although our previous study showed that targeted delivery of VD3 reduced the rate of proliferation significantly (P < 0.05) in C6 glioma cells (a drug-resistant cell line), here we concluded that combinatorial therapy of exogenous VD3 with doxorubicin, epirobicin, and docetaxel not only did not lead to the enhancement of cytotoxic effects of the aforementioned drugs but also increased the cancerous characteristics in C6 glioma, in vitro.  相似文献   

20.
The goal of this study was to determine whether ultrasound (US) exposure combined with microbubble destruction could be used to enhance non-viral gene delivery in rat C6 glioma cells. Microbubbles were prepared and gently mixed with plasmid DNA. The mixture of the DNA and microbubbles was administered to cultured C6 cells under different US/microbubble conditions. Transfection efficiency and cell viability were assessed by FACS analysis, confocal laser scanning microscopy, and Trypan blue staining. The results demonstrate that microbubble with US exposure could significantly enhance the reporter gene expression as compared with other groups. No statistical significant difference was observed in the glioma cell viability between different groups. Our in vitro findings suggest that US-mediated microbubble destruction has the potential to promote safe and efficient gene transfer into C6 cells. This non-invasive gene transfer method may be useful for safe clinical gene therapy of brain cancer without a viral vector system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号