首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two major isoforms of the Runx2 gene are expressed by alternative promoter usage: Runx2 type I (Runx2-I) is derived from the proximal promoter (P2), and Runx2 type II (Runx2-II) is produced by the distal promoter (P1). Our previous results indicate that Dlx5 mediates BMP-2-induced Runx2 expression and osteoblast differentiation (Lee, M.-H., Kim, Y-J., Kim, H-J., Park, H-D., Kang, A-R., Kyung, H.-M., Sung, J-H., Wozney, J. M., Kim, H-J., and Ryoo, H-M. (2003) J. Biol. Chem. 278, 34387-34394). However, little is known of the molecular mechanisms by which Dlx5 up-regulates Runx2 expression in BMP-2 signaling. Here, Runx2-II expression was found to be specifically stimulated by BMP-2 treatment or by Dlx5 overexpression. In addition, BMP-2, Dlx5, and Runx2-II were found to be expressed in osteogenic fronts and parietal bones of the developing cranial vault and Runx2-I and Msx2 in the sutural mesenchyme. Furthermore, Runx2 P1 promoter activity was strongly stimulated by Dlx5 overexpression, whereas Runx2 P2 promoter activity was not. Runx2 P1 promoter deletion analysis indicated that the Dlx5-specific response is due to sequences between -756 and -342 bp of the P1 promoter, where three Dlx5-response elements are located. Dlx5 responsiveness to these elements was confirmed by gel mobility shift assay and site-directed mutagenesis. Moreover, Msx2 specifically suppressed the Runx2 P1 promoter, and the responsible region overlaps with that recognized by Dlx5. In summary, Dlx5 specifically transactivates the Runx2 P1 promoter, and its action on the P1 promoter is antagonized by Msx2.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
In this study, we demonstrate a stimulatory effect of tanshinone IIA isolated from the root of Salvia miltiorrhiza on the commitment of bi-potential mesenchymal precursor C2C12 cells into osteoblasts in the presence of bone morphogenetic protein (BMP)-2. At low concentrations, tanshinone IIA enhanced BMP-2-stimulated induction of alkaline phosphatase (ALP), an early phase biomarker of osteoblast differentiation, and mRNA expression of BMPs. ALP induction was inhibited by the BMP antagonist noggin, suggesting that tanshinone IIA enhances the osteogenic activity of BMP signaling. Furthermore, considering the tanshinone IIA-mediated enhancement of BMP-2-stimulated Smad-Runx2 activities, tanshinone IIA could enhance the osteogenic activity of BMP-2 via acceleration of Smad-Runx2 activation. Additionally, pharmacologic inhibition studies suggest the possible involvement of p38 in the action of tanshinone IIA. The p38 inhibitor SB202190 strongly and dose-dependently inhibited tanshinone IIA-enhanced ALP induction. SB202190 also dose-dependently inhibited the tanshinone IIA-induced p38 activation and combined tanshinone IIA-BMP-2-induced Smad activation. In conclusion, tanshinone IIA enhances the commitment of C2C12 cells into osteoblasts and their differentiation through synergistic cross talk between tanshinone IIA-induced p38 activation and BMP-2-induced Smad activation. These activations could subsequently induce the activation of Runx2, which induces osteogenesis via regulation of the osteogenic factors BMP and ALP expression.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号