首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution, quantitation, and synthesis of high mobility group (HMG) proteins during spermatogenesis in the rat have been determined. HMG1, -2, -14, and -17 were isolated from rat testes by Bio-Rex 70 chromatography combined with preparative gel electrophoresis. Amino acid analysis revealed that each rat testis HMG protein was similar to its calf thymus analogue. Tryptic peptide maps of somatic and testis HMG2 showed no differences and, therefore, failed to detect an HMG2 variant. Testis levels of HMG proteins, relative to DNA content, were equivalent to other tissues for HMG1 (13 micrograms/mg of DNA), HMG14 (3 micrograms/mg of DNA), and HMG17 (5 micrograms/mg of DNA). The testis was distinguished in that it contained a substantially higher level of HMG2 than any other rat tissue (32 micrograms/mg of DNA). HMG protein levels were determined from purified or enriched populations of testis cells representing the major stages of spermatogenesis; spermatogonia and early primary spermatocytes, pachytene spermatocytes, early spermatids, and late spermatids; and testicular somatic cells. High levels of HMG2 in the testis were due to pachytene spermatocytes and early spermatids (56 +/- 4 and 47 +/- 6 micrograms/mg of DNA, respectively). Mixtures of spermatogonia and early primary spermatocytes showed lower levels of HMG2 (12 +/- 3 micrograms/mg of DNA) similar to proliferating somatic tissues, whereas late spermatids had no detectable HMG proteins. The somatic cells of the testis, including isolated populations of Sertoli and Leydig cells, showed very low levels of HMG2 (2 micrograms/mg of DNA), similar to those in nonproliferating somatic tissues. HMG proteins were synthesized in spermatogonia and primary spermatocytes, but not in spermatids. Rat testis HMG2 exhibited two bands on acid-urea gels. A "slow" form comigrated with somatic cell HMG2, while the other "fast" band migrated ahead of the somatic form and appeared to be testis-specific. The "fast" form of HMG2 accounted for the large increase of HMG2 levels in rat testes. These results show that the very high level of HMG2 in testis is not associated with proliferative activity as previously hypothesized.  相似文献   

2.
The low-molecular-mass high-mobility-group (HMG) proteins from young rat thymus nuclei were fractionated by high-performance liquid chromatography. Two proteins analogous to calf HMG14 and HMG17 were found together with a third major component HMGI similar to that found in HeLa cells [Lund et al. (1983) FEBS Lett. 152, 163-167]. HMGI has as amino acid composition similar to but distinct from HMG14 and HMG17. The three proteins form a family of proteins with HMG14 having an amino acid composition intermediate between HMG17 and HMGI. HMGI is present in proliferating fibroblasts and embryos but is present in very low levels in rat liver, a non-dividing tissue, supporting the notion that HMGI is required for proliferating cells. Fibroblasts transformed with avian sarcoma virus have high levels of HMGI and an additional band HMGI' but the presence of HMGI and HMGI' is not dependent on a functional src gene product.  相似文献   

3.
The rat liver single-stranded DNA binding protein, S25 and HD25, isolated by differential DNA cellulose affinity chromatography was compared to the high mobility group proteins, HMG1 and HMG2, isolated from rat liver chromatin by the technique of Goodwin et al. (Goodwin, G. H., Sanders, C., and Johns, E. W. (1973) Eur. J. Biochem. 38, 14-19). Analysis of their amino acid composition, electrophoretic mobility, and tryptic peptide map reveal the identity of the single-stranded DNA binding protein with HMG1 protein, implying that the rat liver HMG1 protein becomes able both to destabilize a double helix of DNA and to stimulate homologous DNA polymerases only when rat liver cells enter a phase of DNA synthesis, possibly after a specific modification.  相似文献   

4.
Chromosomal high-mobility-group (HMG) proteins have been examined as substrates for calcium/phospholipid-dependent protein kinase C. Protein kinase C from rat brain phosphorylated efficiently both HMG 14 and HMG 17 derived from calf thymus and the reactions were calcium/phospholipid-dependent. About 1 mol of 32P was incorporated per mol of HMG 14 and HMG 17. Phosphopeptide mapping suggested that the same major site was phosphorylated in both proteins at serine. The apparent Km values for HMG 14 and HMG 17 were about 5 μM. HMG 14, HMG 17 and the five histone H1 subtypes prepared from rat thymus, liver and spleen were phosphorylated by the kinase. HMG 14 and HMG 17 from transformed human lymphoblasts (Wi-L2) were also phosphorylated in a calcium/phospholipid-dependent manner. HMG 1 and HMG 2 from the tissues examined were found to be poor substrates for the kinase.  相似文献   

5.
The GABA transporters (GAT1, GAT2, GAT3, and BGT1) have mostly been discussed in relation to their potential roles in controlling the action of transmitter GABA in the nervous system. We have generated the first mice lacking the GAT2 (slc6a13) gene. Deletion of GAT2 (both mRNA and protein) neither affected growth, fertility, nor life span under nonchallenging rearing conditions. Immunocytochemistry showed that the GAT2 protein was predominantly expressed in the plasma membranes of periportal hepatocytes and in the basolateral membranes of proximal tubules in the renal cortex. This was validated by processing tissue from wild-type and knockout mice in parallel. Deletion of GAT2 reduced liver taurine levels by 50%, without affecting the expression of the taurine transporter TAUT. These results suggest an important role for GAT2 in taurine uptake from portal blood into liver. In support of this notion, GAT2-transfected HEK293 cells transported [3H]taurine. Furthermore, most of the uptake of [3H]GABA by cultured rat hepatocytes was due to GAT2, and this uptake was inhibited by taurine. GAT2 was not detected in brain parenchyma proper, excluding a role in GABA inactivation. It was, however, expressed in the leptomeninges and in a subpopulation of brain blood vessels. Deletion of GAT2 increased brain taurine levels by 20%, suggesting a taurine-exporting role for GAT2 in the brain.  相似文献   

6.
本文以0.35mol/LKCl抽提不同年龄鼠肝细胞,将抽提后细胞核分别与抽提物、纯化的染色质高迁移率非组蛋白(HMG)及组蛋白H1进行重组。结果发现,0.35mol/LKCl抽提后老年鼠肝细胞与断乳鼠肝细胞核抽提物重组转录活性高于其与自身或青年鼠肝细胞核抽提液重组者。还发现高迁移率非组蛋白可提高抽提后鼠肝细胞核转录活性,对断乳鼠的作用最强;但不影响未经抽提的细胞核转录活性。相反,组蛋白H1则可抑制各年龄组鼠肝细胞核的转录活性。  相似文献   

7.
8.
9.
This report describes the characterization and partial purification of rat liver 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) synthase activity. A preliminary characterization of Chinese hamster ovary (CHO) cell HMG CoA synthase activity is also presented. Ion-exchange chromatography of ammonium sulfate precipitates of rat liver cytosol indicate the existence of two isoenzymes of HMG CoA synthase. These isoenzymes are physically, catalytically, and immunologically distinct. One of these isoenzymes, peak 1, resembles mitochondrial HMG-CoA synthase activity as evidenced by similarities in elution upon ion-exchange chromatography, inhibition by MgCl2, and cross reactivity with an antibody prepared against the mitochondrial enzyme. As peak 1 activity is unstable, further purification studies were performed on peak 2 activity. Peak 2 can be further resolved into two activities (peaks 2A and 2B) by gel filtration. In contrast, CHO-K1 cells (a permanent fibroblast line) possess only peak 2 type HMG CoA synthase activity.  相似文献   

10.
A significant advance in cell culture methodology has permitted an analysis of the regulation of liver cell cholesterol metabolism by lipoproteins. The effect of rat lipoproteins on the activity of the rate limiting enzyme in cholesterol biosynthesis, HMG CoA reductase, was studied in monolayer cultures of adult rat hepatic parenchymal cells. Lipoproteins isolated from normocholesterolemic rat plasma, including low density lipoprotein, did not suppress HMG CoA reductase activity. However, enzyme activity was profoundly suppressed by a cholesterol rich d < 1.063 lipoprotein(s) isolated from hyperlipemic rat plasma. This lipoprotein may regulate the suppression of endogenous hepatic cholesterol biosynthesis which occurs after cholesterol feeding.  相似文献   

11.
We established a simple and efficient method for gene transfer in vitro (to cultured cells) and in vivo (to an adult organ) using liposomes. Plasmid DNA and proteins were efficiently co-encapsulated in liposomes by agitation and sonication, and were co-introduced into cells by hemagglutinating virus of Japan (HVJ)-mediated membrane fusion. Introduction of the Escherichia coli beta-galactosidase gene with non-histone chromosomal protein high mobility group 1 (HMG1) into LLCMK2 cells resulted in about 3 times higher beta-galactosidase activity than that on introduction of the gene alone. Two days after injection of HVJ-liposomes containing the beta-galactosidase gene and HMG1 under the perisplanchnic membrane of adult rat liver, hepatic cells near the injection site were found by 5-bromo-4-chloro-3-indolyl beta-D-galactoside staining to have beta-galactosidase activity. After similar injection of HVJ-liposomes containing the hepatitis B virus surface antigen (HBsAg) gene and HMG1, HBsAg was detected in the serum for 9 days with a maximum of 25-45 ng/ml on day 2 after the injection.  相似文献   

12.
Nuclear and cytoplasmic fractions were isolated from various tissues of the rat by a nonaqueous technique. The high-mobility-group (HMG) proteins were extracted from these fractions with acid and separated by one- and two-dimensional PAGE. The concentrations of high-mobility-group proteins HMG1, HMG2, and HMG17 in the nucleus and cytoplasm were then estimated from the staining intensities of the electrophoretic bands. The cytoplasmic concentrations of these proteins were very low--usually less than 1/30 of those present in the corresponding nuclear fractions. For the tissues studied (liver, kidney, heart, and lung), the concentrations of HMG proteins in the nucleus did not differ significantly from one tissue to another. Averaged over the four tissues investigated, there were 0.28 molecule of HMG1, 0.18 molecule of HMG2, and 0.46 molecule of HMG17 per nucleosome. These values are considerably higher than those that have been reported previously.  相似文献   

13.
Metabolism in trypanosomatids is compartmentalised with major pathways, notably glycolysis, present in peroxisome-like organelles called glycosomes. To date, little information is available about the transport of metabolites through the glycosomal membrane. Previously, three ATP-binding cassette (ABC) transporters, called GAT1-3 for Glycosomal ABC Transporters 1 to 3, have been identified in the glycosomal membrane of Trypanosoma brucei. Here we report that GAT1 and GAT3 are expressed both in bloodstream and procyclic form trypanosomes, whereas GAT2 is mainly or exclusively expressed in bloodstream-form cells. Protease protection experiments showed that the nucleotide-binding domain of GAT1 and GAT3 is exposed to the cytosol, indicating that these transporters mediate the ATP-dependent uptake of solutes from the cytosol into the glycosomal lumen. Depletion of GAT1 and GAT3 by RNA interference in procyclic cells grown in glucose-containing medium did not affect growth. Surprisingly, GAT1 depletion enhanced the expression of the very different GAT3 protein. Expression knockdown of GAT1, but not GAT3, in procyclic cells cultured in glucose-free medium was lethal. Depletion of GAT1 in glucose-grown procyclic cells caused a modification of the total cellular fatty-acid composition. No or only minor changes were observed in the levels of most fatty acids, including oleate (C18:1), nevertheless the linoleate (C18:2) abundance was significantly increased upon GAT1 silencing. Furthermore, glycosomes purified from procyclic wild-type cells incorporate oleoyl-CoA in a concentration- and ATP-dependent manner, whilst this incorporation was severely reduced in glycosomes from cells in which GAT1 levels had been decreased. Together, these results strongly suggest that GAT1 serves to transport primarily oleoyl-CoA, but possibly also other fatty acids, from the cytosol into the glycosomal lumen and that its depletion results in a cellular linoleate accumulation, probably due to the presence of an active oleate desaturase. The role of intraglycosomal oleoyl-CoA and its essentiality when the trypanosomes are grown in the absence of glucose, are discussed.  相似文献   

14.
The present work describes a perchloric-acid-soluble high-mobility-group (HMG)-like protein present in HeLa and Ehrlich ascites cells, rat and calf liver. The protein is designated P1 and has, depending on the source, a molecular mass 48-53 kDa and an amino acid composition which, like the HMG proteins, is characterized by a high content of acidic and basic residues and of proline. The protein contains about 10 mol serine/100 mol amino acid residues, is highly phosphorylated and has, in contrast to the known HMG proteins, an acidic isoelectric point of 5.0. An estimate suggests that protein P1 in HeLa interphase cells contains 25-30 residues of phosphate. Like HMG 1 and 2 it is distributed between the nucleus and the cytoplasm. In HeLa metaphase cells P1 is further modified, resulting in an increase in apparent molecular mass from 53 kDa to 56 kDa.  相似文献   

15.
32P-labelled chromatin proteins from rat liver and ventral prostate were fractionated according to the procedure designed to enrich high-mobility-group (HMG) nonhistone proteins. This fraction, however, reproducibly demonstrated small amounts of apparently basic nonhistone proteins other than HMG nonhistone proteins. These proteins appeared to be tissue specific and were highly labelled with 32P. The 32P-labelled phosphoproteins were soluble in trichloroacetic or perchloric acid, migrated in acid-urea polyacrylamide gels, and demonstrated pI values ranging from 6.8 to 7.5. The HMG proteins 1 and 2 showed no incorporation of radioactivity under these experimental conditions.  相似文献   

16.
17.
HMG1 (high mobility group 1) is a ubiquitous and abundant chromatin component. However, HMG1 can be secreted by activated macrophages and monocytes, and can act as a mediator of inflammation and endotoxic lethality. Here we document a role of extracellular HMG1 in cell migration. HMG1 (and its individual DNA-binding domains) stimulated migration of rat smooth muscle cells in chemotaxis, chemokinesis, and wound healing assays. HMG1 induced rapid and transient changes of cell shape, and actin cytoskeleton reorganization leading to an elongated polarized morphology typical of motile cells. These effects were inhibited by antibodies directed against the receptor of advanced glycation endproducts, indicating that the receptor of advanced glycation endproducts is the receptor mediating the HMG1-dependent migratory responses. Pertussis toxin and the mitogen-activated protein kinase kinase inhibitor PD98059 also blocked HMG1-induced rat smooth muscle cell migration, suggesting that a G(i/o) protein and mitogen-activated protein kinases are required for the HMG1 signaling pathway. We also show that HMG1 can be released by damage or necrosis of a variety of cell types, including endothelial cells. Thus, HMG1 has all the hallmarks of a molecule that can promote atherosclerosis and restenosis after vascular damage.  相似文献   

18.
Rat liver HMG1: a physiological nucleosome assembly factor.   总被引:24,自引:10,他引:14       下载免费PDF全文
Incubation of rat liver single-stranded DNA-binding protein HMG1 with the four core histones at 0.15 M NaCl favors histone association primarily into tetramers and, to a lesser extent, into octamers. The assembly of pre-formed histone-HMG1 complexes with DNA yields nucleosome-like subunits which satisfy most of the criteria defining native core particles: (i) the circular DNA extracted from the complexes is supercoiled indicating that the initially relaxed DNA acquired superhelical turns during complex formation in the presence of topoisomerase I; (ii) the digestion of the complexes with micrococcal nuclease yields a DNA fragment of approximately 140 bp in length; (iii) electron microscopy of the reconstituted complexes shows a beaded structure with the DNA wrapped around the histone cores, leading to a reduction in the contour length of the genome compared with free DNA. Moreover, in the presence of HMG1, nucleosome assembly occurs rapidly at 0.15 M NaCl. Therefore, in addition to its DNA-binding properties, HMG1 mediates the assembly of nucleosomes in vitro under conditions of physiological ionic strength. The possible involvement of these properties in the DNA replication process is discussed.  相似文献   

19.
Like all members of the Na(+)/Cl(-)-dependent neurotransmitter transporter family, the rat gamma-aminobutyric acid transporter-1 (GAT1) is sorted and targeted to specialized domains of the cell surface. Here we identify two discontinuous signals in the carboxyl terminus of GAT1 that cooperate to drive surface expression. This conclusion is based on the following observations. Upon deletion of the last 37 amino acids, the resulting GAT1-Delta37 remained trapped in the endoplasmic reticulum. The presence of 10 additional residues (GAT1-Delta27) sufficed to support the interaction with the coat protein complex II component Sec24D; surface expression of GAT1-Delta27 reached 50% of the wild type level. Additional extensions up to the position -3 (GAT1-Delta3) did not further enhance surface expression. Thus the last three amino acids (AYI) comprise a second distal signal. The sequence AYI is reminiscent of a type II PDZ-binding motif; accordingly substituting Glu for Ile abrogated the effect of this motif. Neither the AYI motif nor the last 10 residues rescued the protein from intracellular retention when grafted onto GAT1-Delta37 and GAT1-Delta32; the AYI motif was dispensable for targeting of GAT1 to the growth cone of differentiating PC12 cells. We therefore conclude that the two segments act in a hierarchical manner such that the proximal motif ((569)VMI(571)) supports endoplasmic reticulum export of the protein and the distal AYI motif places GAT1 under the control of the exocyst.  相似文献   

20.
Total chromosomal HMG (high-mobility-group) proteins have been isolated from oestrogen-stimulated chick oviduct. The antibodies against these proteins were induced in mice and subsequently their spleen cells were fused with myeloma cells to form hybridomas. A highly purified HMG protein, 17, was used to select for the hybridomas that produce antibody against HMG protein 17. The hybridomas were cultured and injected into mice to produce ascites. The antibody against HMG protein 17 in the IgG (immunoglobulin G) fraction of the ascites fluid was obtained by Protein A-Sepharose column chromatography. We have devised a solid-phase radioimmunoassay and enzyme-linked serological assay for the detection and characterization of this antibody directed against HMG protein 17. This anti-(HMG protein 17) IgG interacted only with HMG protein 17, but not with other chromosomal proteins, e.g. histone H1, "95K protein' (a chick oviduct-specific chromosomal protein) and HMG proteins 1, 2 and 14. The monospecific nature of this anti-(HMG protein 17) IgG fraction is confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号