首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The HMG domains of the chromosomal high mobility group proteins homologous to the vertebrate HMG1 and HMG2 proteins preferentially recognize distorted DNA structures. DNA binding also induces a substantial bend. Using fluorescence resonance energy transfer (FRET), we have determined the changes in the end-to-end distance consequent on the binding of selected insect counterparts of HMG1 to two DNA fragments, one of 18 bp containing a single dA(2) bulge and a second of 27 bp with two dA(2) bulges. The observed changes are consistent with overall bend angles for the complex of the single HMG domain with one bulge and of two domains with two bulges of approximately 90-100 degrees and approximately 180-200 degrees, respectively. The former value contrasts with an inferred value of 150 degrees reported by Heyduk et al. (1) for the bend induced by a single domain. We also observe that the induced bend angle is unaffected by the presence of the C-terminal acidic region. The DNA bend of approximately 95 degrees observed in the HMG domain complexes is similar in magnitude to that induced by the TATA-binding protein (80 degrees), each monomeric unit of the integration host factor (80 degrees), and the LEF-1 HMG domain (107 degrees). We suggest this value may represent a steric limitation on the extent of DNA bending induced by a single DNA-binding motif.  相似文献   

4.
We are interested in the role of asymmetric phosphate neutralization in DNA bending induced by proteins. We describe an experimental estimate of the actual electrostatic contribution of asymmetric phosphate neutralization to the bending of DNA by the Escherichia coli catabolite activator protein (CAP), a prototypical DNA-bending protein. Following assignment of putative electrostatic interactions between CAP and DNA phosphates based on X-ray crystal structures, appropriate phosphates in the CAP half-site DNA were chemically neutralized by methylphosphonate substitution. DNA shape was then evaluated using a semi-synthetic DNA electrophoretic phasing assay. Our results confirm that the unmodified CAP DNA half-site sequence is intrinsically curved by 26° in the direction enhanced in the complex with protein. In the absence of protein, neutralization of five appropriate phosphates increases DNA curvature to 32° (~23% increase), in the predicted direction. Shifting the placement of the neutralized phosphates changes the DNA shape, suggesting that sequence-directed DNA curvature can be modified by the asymmetry of phosphate neutralization. We suggest that asymmetric phosphate neutralization contributes favorably to DNA bending by CAP, but cannot account for the full DNA deformation.  相似文献   

5.
The effect of the catabolite activator protein, CAP, on the ligation of a 144 bp DNA was examined. This DNA has EcoRI ends and contains the lac operon CAP site and promoter-operator region. At low DNA concentrations (nM) and 37 degrees C the presence of CAP and cAMP enables T4 ligase to convert the linear duplex to a covalently closed ring. Nuclease digestion and sedimentation equilibrium studies show that the ring is a monomer circle. Ring formation does not occur in the absence of either CAP or cAMP. The kinetics of ring closure, and the bimolecular joining of two fragments were measured. The presence of CAP decreased the rate of bimolecular joining of the EcoRI ends of linear DNAs. Thus the measured rates of ring closure are likely to be a lower limit for this process. Closure reactions carried out with ethidium bromide indicate that CAP induced bending rather than twisting is responsible for ring formation. The all or none nature of the closure reaction suggests that persistence length DNAs may be useful in a simple assay for protein induced DNA bending.  相似文献   

6.
V L Miller  R K Taylor  J J Mekalanos 《Cell》1987,48(2):271-279
  相似文献   

7.
8.
9.
10.
11.
12.
13.
P1, a high mobility group-like nuclear protein, phosphorylated by casein kinase II on multiple sites in situ, has been found to be phosphorylated in vitro by protein kinase C, cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II on multiple and mostly distinct thermolytic peptides. All these enzymes phosphorylated predominantly serine residues, with casein kinase II and protein kinase C also labeling threonine residues. Both casein kinase II and second messenger-regulated protein kinases, particularly protein kinase C, might therefore be involved in the physiological regulation of multisite phosphorylation of P1.  相似文献   

14.
cis-Diamminedichloroplatinum (II) (cisplatin, CDDP) is a widely used chemotherapeutic agent. While many tumors are highly responsive to CDDP, certain tumors are resistant to this drug, limiting its efficacy. The anti-tumor activity of CDDP is believed to result from its coordination bonding to chromosomal DNA. Alterations in tumor cell sensitivity to CDDP may result from the presence or absence of protein(s) which specifically recognize CDDP-damaged DNA. We have developed a damaged-DNA affinity precipitation assay that allows the direct identification of cellular proteins that bind to CDDP-damaged DNA. Using this procedure, we have identified several proteins which specifically bind to CDDP-damaged DNA. Two of these proteins have been identified as high mobility group proteins (HMG) 1 and 2 in the current report, we have characterized the binding of these proteins to CDDP-DNA. The calculated Kd of binding to CDDP-damaged DNA was 3.27 x 10(-10) for HMG1 and 1.87 x 10(-10) for HMG2. Using highly specific chemical modifying reagents, we have determined that Cys residues play an important role in protein binding. We also observed that HMG2 will bind to DNA modified with carboplatin and iproplatin although to a lesser extent than to DNA damaged with CDDP. Thus, our results indicate that HMG 2 binds with high affinity to DNA modified with therapeutically active platinum compounds. In addition, our findings suggest that thiol groups play an essential role in the binding of HMG1 and HMG2 to CDDP-DNA.  相似文献   

15.
16.
17.
18.
19.
20.
A DNA binding protein of 31 Kd -mtDBPC- has been isolated from X. laevis oocyte mitochondria. It is present in large amounts in the organelle and does not show any enzymatic activity. Its binding to the superhelical form of a DNA is higher than for any other form, or for RNA. No sequence specificity could be found for any mtDNA fragments tested, including both origins of replication. It is able to introduce superhelical turns into relaxed circular DNA in the presence of a topoisomerase I activity. It could be a component of the mitochondrial nucleoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号