首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone marrow mesenchymal stem cells (MSCs) are considered as a promising cell source to treat the acute myocardial infarction. However, over 90% of the stem cells usually die in the first three days of transplantation. Survival potential, migration ability and paracrine capacity have been considered as the most important three factors for cell transplantation in the ischemic cardiac treatment. We hypothesized that stromal-derived factor-1 (SDF-1)/CXCR4 axis plays a critical role in the regulation of these processes. In this study, apoptosis was induced by exposure of MSCs to H2O2 for 2 h. After re-oxygenation, the SDF-1 pretreated MSCs demonstrated a significant increase in survival and proliferation. SDF-1 pretreatment also enhanced the migration and increased the secretion of pro-survival and angiogenic cytokines including basic fibroblast growth factor and vascular endothelial growth factor. Western blot and RT-PCR demonstrated that SDF-1 pretreatment significantly activated the pro-survival Akt and Erk signaling pathways and up-regulated Bcl-2/Bax ratio. These protective effects were partially inhibited by AMD3100, an antagonist of CXCR4. We conclude that the SDF-1/CXCR4 axis is critical for MSC survival, migration and cytokine secretion.  相似文献   

2.
3.
基质细胞衍生因子-1及其受体CXCR4与肿瘤的生物学行为   总被引:2,自引:0,他引:2  
基质细胞衍生因子-1(stromal cell derived factor-1, SDF-1)是由基质细胞持续产生并分布广泛的趋化因子,CXCR4则为SDF-1的高度特异性受体.最近研究显示,SDF-1/CXCR4生物轴除了调节肿瘤的侵袭转移能力外,还与多种肿瘤的生物学行为关系密切.本文主要介绍SDF-1/CXCR4的结构与功能、SDF-1/CXCR4与肿痛生物学行为的关系,探讨以SDF-1/CXCR4生物轴为靶点的肿瘤治疗前景.  相似文献   

4.
Gliomas take a number of different genetic routes in the progression to glioblastoma multiforme, a highly invasive variant that is mostly unresponsive to current therapies. The alpha-chemokine stromal cell-derived factor (SDF)-1 alpha binds to the seven transmembrane G-protein-coupled CXCR-4 receptor and acts to modulate cell migration and proliferation by activating multiple signal transduction pathways. Leucine-rich repeats containing 4 (LRRC4), a putative glioma suppressive gene, inhibits glioblastoma cells tumorigenesis in vivo and cell proliferation and invasion in vitro. We also previously demonstrated that LRRC4 controlled glioblastoma cells proliferation by ERK/AKT/NF-kappa B signaling pathway. In the present study, we demonstrate that CXC chemokine receptor 4 (CXCR4) is expressed in human glioblastoma U251 cell line, and that SDF-1 alpha increases the proliferation, chemotaxis, and invasion in CXCR4+ glioblastoma U251 cells through the activation of ERK1/2 and Akt. The reintroduction of LRRC4 in U251 cells inhibits the expression of CXCR4 and SDF-1 alpha/CXCR4 axis-mediated downstream intracellular pathways such as ERK1/2 and Akt leading to proliferate, chemotactic and invasive effects. Furthermore, we provide evidence for proMMP-2 activation involvement in the SDF-1 alpha/CXCR4 axis-mediated signaling pathway. LRRC4 significantly inhibits proMMP-2 activation by SDF-1 alpha/CXCR4 axis-mediated ERK1/2 and Akt signaling pathway. Collectively, these results suggest a possible important "cross-talk" between LRRC4 and SDF-1 alpha/CXCR4 axis-mediated intracellular pathways that can link signals of cell proliferation, chemotaxis and invasion in glioblastoma, and may represent a new target for development of new therapeutic strategies in glioma.  相似文献   

5.
6.
CXC趋化因子受体4(CXCR4)是最主要的趋化因子受体之一,在多种类型细胞中均有表达,包括淋巴细胞、造血干细胞、内皮细胞和肿瘤细胞。CXCR4与其配体——基质细胞衍生因子1(SDF-1)(也称CXCL12)结合,能介导多种与细胞趋化、细胞存活或增殖相关信号传导通路。CXCR4与SDF-1轴涉及肿瘤的恶性演进、血管生成、转移和存活。因此,阻断CXCR4与SDF-1轴及下游信号通路成为相关治疗的分子靶标。  相似文献   

7.
基质细胞衍生因子-1(stromal cell-derived factor-1,SDF-1)及其受体CXCR4构成SDF-1/CXCR4轴系统具有许多重要的生物学特性和功能。近年来随着该领域的研究不断深入,越来越多的发现表明,SDF-1/CXCR4轴系统在组织损伤及修复中起着重要作用,其在骨组织再生修复中的作用也日益受到关注。该文主要对SDF-1/CXCR4轴系统的生物学特性及其在骨再生修复中的作用进行综述。  相似文献   

8.
The chemokine stromal cell-derived factor-1 (SDF-1) plays a critical role in mobilizing precursor cells in the bone marrow and is essential for efficient vascular regeneration and repair. We recently reported that calcium augments the expression of chemokine receptor CXCR4 and enhances the angiogenic potential of bone marrow derived cells (BMCs). Neovascularization is impaired by aging therefore we suggested that aging may cause defects of CXCR4 expression and cellular responses to calcium. Indeed we found that both the basal and calcium-induced surface expression of CXCR4 on BMCs was significantly reduced in 25-month-old mice compared with 2-month-old mice. Reduced Ca-induced CXCR4 expression in BMC from aged mice was associated with defective calcium influx. Diminished CXCR4 surface expression in BMC from aged mice correlated with diminished neovascularization in an ischemic hindlimb model with less accumulation of CD34(+) progenitor cells in the ischemic muscle with or without local overexpression of SDF-1. Intravenous injection of BMCs from old mice homed less efficiently to ischemic muscle and stimulated significantly less neovascularization compared with the BMCs from young mice. Transplantation of old BMCs into young mice did not reconstitute CXCR4 functions suggesting that the defects were not reversible by changing the environment. We conclude that defects of basal and calcium-regulated functions of the CXCR4/SDF-1 axis in BMCs contribute significantly to the age-related loss of vasculogenic responses.  相似文献   

9.
目的:探讨SDF-1/CXCR4及VEGF-C在喉癌淋巴结转移中的作用机制。方法:随机选取2012年8月至2015年8月我院收治的90例喉癌患者,将这些患者作为研究组,另选取20例具有相应正常粘膜组织的患者为对照组,运用免疫组化SP法对CXCR4及VEGF-C及SDF-1进行检测,分析SDF-1/CXCR4及VEGF-C在喉癌淋巴结组织中的表达及其与临床病理特征的关系。结果:喉癌组织中CXCR4、VEGF-C、SDF-1的阳性表达率均显著高于正常组织(P0.05);Ⅲ+Ⅳ患者CXCR4、VEGF-C、SDF-1的阳性表达率均显著高于Ⅰ+Ⅱ患者(P0.05);低分化患者CXCR4、VEGF-C的阳性表达率均显著高于高中分化患者(P0.05),但SDF-1阳性表达率之间比较,差异均不具有统计学意义(P0.05);淋巴结转移患者CXCR4、VEGF-C、SDF-1的阳性表达率均显著高于未发生淋巴结转移的患者,差异具有统计学意义(P0.05);不同年龄、病变部位患者CXCR4、VEGF-C、SDF-1阳性表达率之间比较,差异均不具有统计学意义(P0.05);喉癌组织中CXCR4及VEGF-C阳性表达均呈显著的正相关关系(P0.05);阴性表达也均呈显著的正相关关系(P0.05)。结论:SDF-1/CXCR4及VEGF-C在喉癌淋巴结转移中高表达,可能共同促进喉癌淋巴结转移。  相似文献   

10.
Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study was designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy.  相似文献   

11.
12.
The precise mechanisms of SDF‐1 (CXCL12) in angiogenesis are not fully elucidated. Recently, we showed that Notch inhibition induces extensive intussusceptive angiogenesis by recruitment of mononuclear cells and it was associated with increased levels of SDF‐1 and CXCR4. In the current study, we demonstrated SDF‐1 expression in liver sinusoidal vessels of Notch1 knockout mice with regenerative hyperplasia by means of intussusception, but we did not detect any SDF‐1 expression in wild‐type mice with normal liver vessel structure. In addition, pharmacological inhibition of SDF‐1/CXCR4 signalling by AMD3100 perturbs intussusceptive vascular growth and abolishes mononuclear cell recruitment in the chicken area vasculosa. In contrast, treatment with recombinant SDF‐1 protein increased microvascular density by 34% through augmentation of pillar number compared to controls. The number of extravasating mononuclear cells was four times higher after SDF‐1 application and two times less after blocking this pathway. Bone marrow‐derived mononuclear cells (BMDC) were recruited to vessels in response to elevated expression of SDF‐1 in endothelial cells. They participated in formation and stabilization of pillars. The current study is the first report to implicate SDF‐1/CXCR4 signalling in intussusceptive angiogenesis and further highlights the stabilizing role of BMDC in the formation of pillars during vascular remodelling.  相似文献   

13.
SDF-1和及其受体CXCR4的结构与功能   总被引:5,自引:0,他引:5  
近年基质细胞衍生因子 1(SDF 1)及其受体CXCR4的构效关系与相互作用机制研究进展很快 .研究证实 ,SDF 1N末端 (Nt)氨基酸残基是与CXCR4相互作用的关键区域 .SDF 1的 β链与蛋白聚糖 (GAG)作用而调节SDF 1的功能 ,C端α螺旋有助于维持SDF 1的活性构象 ;CXCR4Nt、ECL2和 (或 )ECL3对于SDF 1和HIVgp12 0对CXCR4的识别和激活都很重要 ,但在识别序列上存在部分交叉重叠 .SDF 1 CXCR4与肿瘤转移密切相关 ,本文还就SDF 1与CXCR4在肿瘤治疗方面的应用进行了讨论 .  相似文献   

14.
The expression of CXCR4, a membrane protein which is involved in the entry of HIV-1, is down-modulated from the cell surface by Phorbol 12-myristate 13-acetate (PMA) and the Ca+ ionophore, Ionomycin. Inducible co-stimulator (ICOS), which contributes to lymphocyte proliferation, is up-regulated by PMA/Ionomycin. We examined the influence of S-nitrosoglutathione (SNG), an inhibitor of Vacuolar H+-ATPase (V-ATPase), on the expression of CXCR4 and ICOS in PMA/Ionomycin-treated peripheral mononuclear cells (PBMC), and of CXCR4 alone in lymphoid cell lines. In this report, we show that SNG interferes with both effects of PMA/Ionomycin, namely CXCR4 down-regulation and ICOS up-regulation. These studies imply opposing roles of V-ATPase in the regulation of CXCR4 and ICOS. The influence of SNG in modulating the susceptibility of T cells to HIV-1 and on their immune responses needs further investigation.  相似文献   

15.
16.
The stromal cell-derived factor-1 (SDF-1) is a CXC chemokine, which plays critical roles in migration, proliferation, and differentiation of leukocytes. SDF-1 is the only known ligand of CXCR4, the coreceptor of X4 HIV strains. We show that SDF-1 binds to high- and low-affinity sites on HeLa cells. Coimmunoprecipitation studies demonstrate that glycanated and oligomerized syndecan-4 but neither syndecan-1, syndecan-2, betaglycan, nor CD44 forms complexes with SDF-1 and CXCR4 on these cells as well as on primary lymphocytes or macrophages. Moreover, biotinylated SDF-1 directly binds in a glycosaminoglycans (GAGs)-dependent manner to electroblotted syndecan-4, and colocalization of SDF-1 with syndecan-4 was visualized by confocal microscopy. Glycosaminidases pretreatment of the HeLa cells or the macrophages decreases the binding of syndecan-4 to the complex formed by it and SDF-1. In addition, this treatment also decreases the binding of the chemokine to CXCR4 on the primary macrophages but not on the HeLa cells. Therefore GAGs-dependent binding of SDF-1 to the cells facilitates SDF-1 binding to CXCR4 on primary macrophages but not on HeLa cell line. Finally, an SDF-1-independent heteromeric complex between syndecan-4 and CXCR4 was visualized on HeLa cells by confocal microscopy as well as by electron microscopy. Moreover, syndecan-4 from lymphocytes, monocyte derived-macrophages, and HeLa cells coimmunoprecipitated with CXCR4. This syndecan-4/CXCR4 complex is likely a functional unit involved in SDF-1 binding. The role of these interactions in the pathophysiology of SDF-1 deserves further study.  相似文献   

17.
18.
趋化因子SDF-1及受体CXCR4研究进展   总被引:3,自引:0,他引:3  
趋化因子(chemokine)是一类一级结构相似,以对白细胞等多种细胞具有趋化定向运动作用为特征的小分子蛋白。功能研究表明,趋化因子在胚胎发育、血管生成、炎症、肿瘤、艾滋病等机体多种生理和病理过程中发挥重要作用,部分趋化因子的衍生物或抑制物具有潜在的临床应用前景。不久的将来,趋化因子及其受体可能成为疾病治疗的分子靶点。  相似文献   

19.
探索CXCR4阻断剂AMD3100促进apoE-/-小鼠动脉粥样硬化病变的分子机制.36只8周龄雄性apoE-/-小鼠随机分为三组:普食组、高脂组和AMD3100组.ELISA法测血清基质细胞衍生因子1α(SDF-1α)水平,采用氧化酶法测定apoE-/-小鼠血清中三酰甘油(TG)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)和低密度脂蛋白胆固醇(LDL-C)含量.HE染色检测apoE-/-小鼠主动脉根部横切面动脉粥样硬化病变.免疫组织化学检测小鼠胸主动脉CXCR4表达.RT-PCR和Western blot分别检测小鼠动脉组织TNF-α、NF-κB mRNA和蛋白质表达.AMD3100组小鼠主动脉根部横截面的动脉粥样硬化病变较高脂组严重,AMD3100组小鼠胸腹主动脉炎症因子TNF-α、NF-κB的mRNA水平和蛋白质表达增高,但血脂TG、TC、HDL-C和LDL-C含量与高脂组均无显著性差异.AMD3100组小鼠外周血SDF-1α水平和动脉壁CXCR4表达低于高脂组.结果表明:AMD3100通过上调炎性因子表达及下调SDF-1/CXCR4 轴促进apoE-/-小鼠动脉粥样硬化病变.  相似文献   

20.
为研究Snail基因修饰对骨髓间充质干细胞(MSCs)CXCR4表达水平及向SDF-1趋化能力影响, 将重组真核表达载体(pCAGGSneo-snail-HA)及对照空质粒(pCAGGSneo)转染MSCs, 采用免疫荧光细胞化学染色、荧光标记流式细胞仪技术及RT-PCR检测细胞CXCR4表达水平; 体外跨膜趋化实验评价MSCs向SDF-1趋化能力, 观察抗CXCR4中和抗体的干预作用。MSCs-Sna的CXCR4表达水平明显高于MSCs-neo。MSCs-Sna在SDF-1诱导下细胞迁移量较MSCs-neo显著增加(P<0.05)。抗CXCR4中和抗体可显著减少SDF-1a诱导的MSCs-Sna趋化运动。研究提示通过上调Snail表达而提高MSCs向正调节表达SDF-1的受损组织迁移效率的可行性, 为优化MSCs迁移力的研究提供了实验基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号