首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
To trigger bacteriophage Mu transposition and replication in response to physiological signals, its immunity repressor must be synchronously inactivated. Two repressor mutants (Vir), which have an altered C-terminal domain and are highly susceptible to degradation by ClpXP protease, confer a dominant negative phenotype by promoting degradation of the wild-type repressor. To search for other modified repressors that can induce Mu derepression in vivo and to determine what part of the inducing repressor molecules are needed to target the unmodified repressor population, repressor peptides with nested deletions starting at the C-terminal end were constructed. Such peptides with a C-terminal ssrA degradation tag promoted a sharp reduction in cellular levels of full-length unmodified repressor, a process largely dependent upon the clpP protease function. Only the repressor DNA-binding domain, located at the N-terminal end, was required in tagged peptides to target unmodified repressor. In addition, some repressor peptides containing the DNA-binding domain promoted derepression without the clpP function, being able to promote repressor inactivation without promoting its degradation. None of the modified repressors could promote derepression if immunity was established by a mutant repressor lacking 18 residues at its C-terminal end. The results indicate that inducing repressor peptides influence the function of the C-terminal domain of the intact repressor, a domain that regulates its degradation and DNA binding. They suggest the possibility that tagged repressor molecules, produced by stalled ribosomes, can be inducers of transposition under starvation conditions.  相似文献   

4.
DNA binding properties of the LexA repressor   总被引:21,自引:0,他引:21  
  相似文献   

5.
It has been shown that 28 transdominant mutant lac repressors which have lost operator DNA-binding ability in vivo and in vitro, but still bind inducer and are able to form tetramers (i-d repressors), could be divided into two groups by their capacity or incapacity to bind non-specifically to the phosphate groups of the DNA backbone. All but one of 15 analysed i-d repressors with amino acid substitutions to the C-terminal of residue 52 showed uneffected non-specific DNA binding. All 13 tested i-d repressors with amino acid substitutions to the N-terminal of residue 53 did not bind to double-stranded DNA, and 11 of these repressors derived from missense mutations in the lacI gene were endogenously degraded. The degradation in vivo only affects the amino-terminal 50-60 residues producing a mutant-specific pattern of stable repressor fragments. These fragments are tetrameric and capable of binding inducer in vivo and in vitro. The proteolytic attack presumably takes place during synthesis of the i-d repressors, since the resulting fragments are stable, both in vivo (as shown by a pulse-chase experiment) and in vitro. The proteolysis in vivo depends on the growth conditions of the bacteria and is higher in cells grown in minimal media than in rich media. Wild-type repressor is only susceptible to limited proteolysis in cells grown in minimal media but not in cells grown in rich media. The results suggest that the majority of the sequence alterations before residue 53 in missense mutant i-d lac repressor proteins affect the three-dimensional structure of the amino-terminal DNA-binding domain of the repressor protein, making it susceptible to proteolytic attack by one or several intracellular proteases.  相似文献   

6.
7.
Rapid degradation of the bacteriophage Mu immunity repressor can be induced in trans by mutant, protease-hypersensitive repressors (Vir) with an altered C-terminal domain (CTD). Genetic and biochemical analysis established that distinct yet overlapping determinants in the wild-type repressor CTD modulate Vir-induced degradation by Escherichia coli ClpXP protease and DNA binding by the N-terminal DNA-binding domain (DBD). Although deletions of the repressor C-terminus resulted in both resistance to ClpXP protease and suppression of a temperature-sensitive DBD mutation (cts62), some cysteine-replacement mutations in the CTD elicited only one of the two phenotypes. Some CTD mutations prevented degradation induced by Vir and resulted in the loss of intrinsic ClpXP protease sensitivity, characteristic of wild-type repressor, and at least two mutant repressors protected Vir from proteolysis. One protease-resistant mutant became susceptible to Vir-induced degradation when it also contained the cts62 mutation, which weakens DNA binding but apparently facilitates conversion to a protease-sensitive conformation. Conversely, this CTD mutation was able to suppress temperature sensitivity of DNA binding by the cts62 repressor. The results suggest that determinants in the CTD not only provide a cryptic ClpX recognition motif but also direct CTD movement that exposes the motif and modulates DNA binding.  相似文献   

8.
B. G. Hall  P. W. Betts    J. C. Wootton 《Genetics》1989,123(4):635-648
The ebg system has been used as a model to study the artificial selection of new catalytic functions of enzymes and of inducer specificities of repressors. A series of mutant enzymes with altered catalytic specificities were previously characterized biochemically as were the changes in inducer specificities of mutant, but fully functional, repressors. The wild type ebg operon has been sequenced, and the sequence differences of the mutant enzymes and repressors have been determined. We now report that, contrary to our previous understanding, ebg enzyme contains 180-kD alpha-subunits and 20-kD beta-subunits, both of which are required for full activity. Mutations that dramatically affect substrate specificity and catalytic efficiency lie in two distinct regions, both well outside of the active site region. Mutations that affect inducer specificity of the ebg repressor lie within predicted sugar binding domains. Comparisons of the ebg beta-galactosidase and repressor with homologous proteins of the Escherichia coli and Klebsiella pneumoniae lac operons, and with the galactose operon repressor, suggest that the ebg and lac operons diverged prior to the divergence of E. coli from Klebsiella. One case of a triple substitution as the consequence of a single event is reported, and the implications of that observation for mechanisms of spontaneous mutagenesis are discussed.  相似文献   

9.
The repressor of bacteriophage Mu functions in the establishment and maintenance of lysogeny by binding to Mu operator DNA to shut down transposition. A domain at its N terminus functions in DNA binding, and temperature-sensitive mutations in this domain can be suppressed by truncations at the C terminus. To understand the role of the C-terminal tail in DNA binding, a fluorescent probe was attached to the C terminus to examine its environment and its movement with respect to the DNA binding domain. The emission spectrum of this probe indicated that the C terminus was in a relatively hydrophobic environment, comparable to the environment of the probe attached within the DNA-binding domain. Fluorescence of two tryptophan residues located within the DNA-binding domain was quenched by the probe attached to the C terminus, indicating that the C terminus is in close proximity to this domain. Addition of DNA, even when it did not contain operator DNA, reduced quenching of tryptophan fluorescence, indicating that the tail moves away from the DNA-binding domain as it interacts with DNA. The presence of the tail also produced a trypsin hypersensitive site within the DNA-binding domain; mutant repressors with an altered or truncated C terminus were relatively resistant to cleavage at this site. Interaction of the wild-type repressor with DNA greatly reduced cleavage at the site. A repressor with a temperature-sensitive mutation in the DNA-binding domain was especially sensitive to cleavage by trypsin even in the presence of DNA, and the C-terminal tail failed to move in the presence of DNA at elevated temperatures. These results indicate that the tail sterically inhibits DNA binding and that it moves during establishment of repression. Such conformational changes are likely to be involved in communication between repressor protomers for cooperative DNA binding.  相似文献   

10.
11.
12.
We have studied the time-resolved intrinsic tryptophan fluorescence of the lac repressor (a symmetric tetramer containing two tryptophan residues per monomer) and two single-tryptophan mutant repressors obtained by site-directed mutagenesis, lac W201Y and lac W220Y. These mutant repressor proteins have tyrosine substituted for tryptophan at positions 201 and 220, respectively, leaving a single tryptophan residue per monomeric subunit at position 220 for the W201Y mutant and at position 201 in the W220Y mutant. It was found that the two decay rates recovered from the analysis of the wild type data do not correspond to the rates recovered from the analysis of the decays of the mutant proteins. Each of these residues in the mutant repressors displays at least two decay rates. Global analysis of the multiwavelength data from all three proteins, however, yielded results consistent with the fluorescence decay of the wild type lac repressor corresponding simply to the weighted linear combination of the decays from the mutant proteins. The effect of ligation by the antagonistic ligands, inducer and operator DNA, was similar for all three proteins. The binding of the inducer sugar resulted in a quenching of the long-lived species, while binding by the operator decreased the lifetime of the short components. Investigation of the time-resolved anisotropy of the intrinsic tryptophan fluorescence in these three proteins revealed that the depolarization of fluorescence resulted from a fast motion and the global tumbling of the macromolecule. Results from the simultaneous global analysis of the frequency domain data sets from the three proteins revealed anisotropic rotations for the macromolecule, consistent with the known elongated shape of the repressor tetramer. In addition, it appears that the excited-state dipole of tryptophan 220 is alighed with the long axis of the repressor.  相似文献   

13.
The LexA repressor from Escherichia coli is a sequence-specific DNA binding protein that shows no pronounced sequence homology with any of the known structural motifs involved in DNA binding. Since little is known about how this protein interacts with DNA, we have selected and characterized a great number of intragenic, second-site mutations which restored at least partially the activity of LexA mutant repressors deficient in DNA binding. In 47 cases, the suppressor effect of these mutations was due to an Ind- phenotype leading presumably to a stabilization of the mutant protein. With one exception, these second-site mutations are all found in a small cluster (amino acid residues 80 to 85) including the LexA cleavage site between amino acid residues 84 and 85 and include both already known Ind- mutations as well as new variants like GN80, GS80, VL82 and AV84. The remaining 26 independently isolated second-site suppressor mutations all mapped within the amino-terminal DNA binding domain of LexA, at positions 22 (situated in the turn between helix 1 and helix 2) and positions 57, 59, 62, 71 and 73. These latter amino acid residues are all found beyond helix 3, in a region where we have previously identified a cluster of LexA (Def) mutant repressors. In several cases the parental LexA (Def) mutation has been removed by subcloning or site-directed mutagenesis. With one exception, these LexA variants show tighter in vivo repression than the LexA wild-type repressor. The most strongly improved variant (LexA EK71, i.e. Glu71----Lys) that shows an about threefold increased repression rate in vivo, was purified and its binding to a short consensus operator DNA fragment studied using a modified nitrocellulose filter binding assay. As expected from the in vivo data, LexA EK71 interacts more tightly with both operator and (more dramatically) with non-operator DNA. A determination of the equilibrium association constants of LexA EK71 and LexA wild-type as a function of monovalent salt concentration suggests that LexA EK71 might form an additional ionic interaction with operator DNA as compared to the LexA wild-type repressor. A comparison of the binding of LexA to a non-operator DNA fragment further shows that LexA interacts with the consensus operator very selectively with a specificity factor of Ks/Kns of 1.4 x 10(6) under near-physiological salt conditions.  相似文献   

14.
15.
16.
17.
Treatments that damage DNA or inhibit DNA synthesis in E. coli induce the expression of a set of functions called SOS functions that are involved in DNA repair, mutagenesis, arrest of cell division and prophage induction. Induction of SOS functions is triggered by inactivation of the LexA repressor or a phage repressor. Inactivation of these repressors results from their cleavage by the E. coli RecA protein in the presence of single-stranded DNA and a nucleoside triphosphate.We found that these cleavage reactions are controlled by two mechanisms in vitro: one is through the structural change of the RecA protein in the ternary complex, RecA-ssDNA-ATP-γ-S. The active ternary complex is formed by binding of ATP-γ-S to a complex of RecA protein and ssDNA. On the other hand, when the RecA protein binds to ATP-γ-S prior to its binding to ssDNA, the resulting complex has no or only very weak cleavage activity toward the repressor. This structural change is negatively controlled by its C-terminal part. The loss of the 25 amino acid residues from the C-terminal leads the RecA protein to stable binding to dsDNA as well as ssDNA, and the protein takes the activated form for the repressor cleavage constitutively. The other mechanism is through the structural change of the repressor. The cleavage reaction of a ∅80cI repressor is greatly stimulated by the presence of d(G-G), and d(G-G) stimulates the cleavage by binding to the C-terminal half of the ∅80cI repressor. Moreover, the C-terminal fragment of the cleaved products of the 80cI repressor was able to cleave a ∅80cI-λ chimeric repressor. These results strongly suggested that th active site of the repressor cleavage was located in the C-terminal domain of the repressor and that the C-terminal fragment produced by the cleavage could cleave the repressor.  相似文献   

18.
The bacterial LacI/GalR family repressors such as lactose operon repressor (LacI), purine nucleotide synthesis repressor (PurR), and trehalose operon repressor (TreR) consist of not only the N-terminal helix-turn-helix DNA-binding domain but also the C-terminal ligand-binding domain that is structurally homologous to periplasmic sugar-binding proteins. These structural features imply that the repressor family evolved by acquiring the DNA-binding domain in the N-terminal of an ancestral periplasmic binding protein (PBP). Phylogenetic analysis of the LacI/GalR family repressors and their PBP homologues revealed that the acquisition of the DNA-binding domain occurred first in the family, and ligand specificity then evolved. The phylogenetic tree also indicates that the acquisition occurred only once before the divergence of the major lineages of eubacteria, and that the LacI/GalR and the PBP families have since undergone extensive gene duplication/loss independently along the evolutionary lineages. Multiple alignments of the repressors and PBPs furthermore revealed that repressors and PBPs with the same ligand specificity have the same or similar residues in their binding sites. This result, together with the phylogenetic relationship, demonstrates that the repressors and the PBPs individually acquired the same ligand specificity by homoplasious replacement, even though their genes are encoded in the same operon.  相似文献   

19.
The repressor protein of bacteriophage P22 binds to DNA as a homodimer. This dimerization is absolutely required for DNA binding. Dimerization is mediated by interactions between amino acids in the carboxyl (C)-terminal domain. We have constructed a plasmid, p22CT-1, which directs the overproduction of just the C-terminal domain of the P22 repressor (P22CT-1). Addition of P22CT-1 to DNA-bound P22 repressor causes the dissociation of the complex. Cross-linking experiments show that P22CT-1 forms specific heterodimers with the intact P22 repressor protein, indicating that inhibition of P22 repressor DNA binding by P22CT-1 is mediated by the formation of DNA binding-inactive P22 repressor:P22CT-1 heterodimers. We have taken advantage of the highly conserved amino acid sequences within the C-terminal domains of the P22 and 434 repressors and have created chimeric proteins to help identify amino acid regions required for dimerization specificity. Our results indicate that the dimerization specificity region of these proteins is concentrated in three segments of amino acid sequence that are spread across the C-terminal domain of each of the two phage repressors. We also show that the set of amino acids that forms the cooperativity interface of the P22 repressor may be distinct from those that form its dimer interface. Furthermore, cooperativity studies of the wild-type and chimeric proteins suggest that the location of cooperativity interface in the 434 repressor may also be distinct from that of its dimerization interface. Interestingly, changes in the dimer interface decreases the ability of the 434 repressor to discriminate between its wild-type binding sites, O(R)1, O(R)2, and O(R)3. Since 434 repressor discrimination between these sites depends in large part on the ability of this protein to recognize sequence-specific differences in DNA structure and flexibility, this result indicates that the C-terminal domain is intimately involved in the recognition of sequence-dependent differences in DNA structure and flexibility.  相似文献   

20.
Members of the IclR family of regulators are proteins with around 250 residues. The IclR family is best defined by a profile covering the effector binding domain. This is supported by structural data and by a number of mutants showing that effector specificity lies within a pocket in the C-terminal domain. These regulators have a helix-turn-helix DNA binding motif in the N-terminal domain and bind target promoters as dimers or as a dimer of dimers. This family comprises regulators acting as repressors, activators and proteins with a dual role. Members of the IclR family control genes whose products are involved in the glyoxylate shunt in Enterobacteriaceae , multidrug resistance, degradation of aromatics, inactivation of quorum-sensing signals, determinants of plant pathogenicity and sporulation. No clear consensus exists on the architecture of DNA binding sites for IclR activators: the MhpR binding site is formed by a 15-bp palindrome, but the binding sites of PcaU and PobR are three perfect 10-bp sequence repetitions forming an inverted and a direct repeat. IclR-type positive regulators bind their promoter DNA in the absence of effector. The mechanism of repression differs among IclR-type regulators. In most of them the binding sites of RNA polymerase and the repressor overlap, so that the repressor occludes RNA polymerase binding. In other cases the repressor binding site is distal to the RNA polymerase, so that the repressor destabilizes the open complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号