首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of H2O2 on electrical and mechanical activity of the longitudinal layer from the guinea-pig ileum were studied using sucrose-gap technique and the influence of H2O2 on ionic current was investigated in single smooth muscle cells by the patch-clamp method. In most of the preparations tested, the spontaneous activity observed was composed of slow waves with superimposed action potentials (APs). Both were resistant to tetrodotoxin and atropine. H2O2 (1 mmol/l) evoked sustained 3-5 mV membrane depolarisation, doubled the amplitude of the slow waves and increased their frequency, augmented the APs and reduced their splitting. These changes were accompanied with significant contraction, which had an amplitude comparable to that of the tonic component of 50 mmol/l K+-induced contraction. Calcium-free solution caused membrane depolarisation, reduction of the slow wave amplitude and frequency, disappearance of APs and decreased the mechanical tension of the preparations. Application of H2O2 (1 mmol/l) into the zero-calcium bath solution recovered the APs, which was accompanied by a low amplitude contraction. H2O2 (up to 1 mmol/l) increased the L-type calcium current (I(Ca)) both under conventional whole-cell patch-clamp configuration and under amphotericin-perforated patches by 16 +/- 3%. These data demonstrated that contractile response of the ileum longitudinal smooth muscle preparation evoked by H2O2 was mainly due to the enhanced electrical activity.  相似文献   

2.
Electrical activity of the tracheal smooth muscle was studied using extracellular bipolar electrodes in 37 decerebrate, paralyzed, and mechanically ventilated dogs. A spontaneous oscillatory potential that consisted of a slow sinusoidal wave of 0.57 +/- 0.13 (SD) Hz mean frequency but lacked a fast spike component was recorded from 15 dogs. Lung collapse accomplished by bilateral pneumothoraxes evoked or augmented the slow potentials that were associated with an increase in tracheal muscle contraction in 26 dogs. This suggests that the inputs from the airway mechanoreceptors reflexly activate the tracheal smooth muscle cells. Bilateral vagal transection abolished both the spontaneous and the reflexly evoked slow waves and provided relaxation of the tracheal smooth muscle. Electrical stimulation of the distal nerve with a train pulse (0.5 ms, 1-30 Hz) evoked slow-wave oscillatory potentials accompanied by a contraction of the tracheal smooth muscle in all the experimental animals. Our observations in this in vivo study confirm that the electrical activity of tracheal smooth muscle consists of slow oscillatory potentials and that tracheal contraction is at least partly coupled to the slow-wave activity of the smooth muscle.  相似文献   

3.
The objective of the study was to demonstrate spontaneous contractile activity of the smooth muscle coat of the aorta in human and animal material. Spontaneous contractility of smooth muscle tissue, or tonus, is essential for the proper function of many internal organs as observed in the many types of muscle cells which make up the internal structures. The spontaneous contractile activity of the muscle tissue in blood vessels is particularly marked in resistance vessels, regulating circulation within organs or tissues. It can also be observed in large blood vessels such as arteries and veins. The contractile activity of muscular tissue isolated from arteries is the result of a number of factors, including endogenous paracrine substances, neurotransmitters released at postganglionic endings (mostly within the sympathetic system), cells capable of spontaneously generation of functional potentials (pacemaking cells) and the vascular endothelium. Pacemaking cells present in the aortic wall are an important factor in the development of the spontaneous contractility of the muscular coat of the aorta. They are capable of generating functional potentials, resulting in the constant tonus of the smooth muscular coat (comprising the aortic wall) due to tonic contraction. In vitro studies were carried out on abdominal aortic sections collected from 30 New Zealand rabbits with a body mass of 3-4 kilograms each and also on aneurysmal abdominal aortic sections collected during elective aneurysm repair procedures in humans (10 abdominal aortic sections). The 1.5 cm-long sections were mounted in chambers of an automated water bath. The sections were oriented in a transverse and longitudal fashion in order to compare contractility. The incubation medium consisted of Krebs-Henseleit buffer. Spontaneous contractile activity was observed during the study, characterized by rhythmic contractions of the muscular layer of the aorta. The contractile tension within the sections was 0.15 mN in the case of rabbit sections and 0.8 mN in the case of human sections. The average duration of a single contraction was 38.3 +/- 15.05 seconds. The average contraction frequency, i.e. the average number of contractions per minute, was 1.61 +/- 0.54 contractions per minute. The spontaneous contraction is modulated by many factors like endogenous paracrine substances, neurotransmitters or vascular endothelium.  相似文献   

4.
The data presented in this work suggest that in human umbilical artery (HUA) smooth muscle cells, the Na(+)/Ca(2+) exchanger (NCX) is active and working in the reverse mode. This supposition is based on the following results: (i) microfluorimetry in HUA smooth muscle cells in situ showed that a Ca(2+)-free extracellular solution diminished intracellular Ca(2+) ([Ca(2+)](i)), and KB-R7943 (5microM), a specific inhibitor of the Ca(2+) entry mode of the exchanger, also decreased [Ca(2+)](i) (40.6+/-4.5% of Ca(2+)-free effect); (ii) KB-R7943 produced the relaxation of HUA rings (-24.7+/-7.3gF/gW, n=8, p<0.05); (iii) stimulation of the NCX by lowering extracellular Na(+) increases basal [Ca(2+)](i) proportionally to Na(+) reduction (Delta fluorescence ratio=0.593+/-0.141 for Na(+)-free solution, n=8) and HUA rings' contraction (peak force=181.5+/-39.7 for 130mM reduction, n=8), both inhibited by KB-R7943 and a Ca(2+)-free extracellular solution. In conclusion, the NCX represents an important Ca(2+) entry route in HUA smooth muscle cells.  相似文献   

5.
Experiments were performed on the smooth muscle cells of rabbit a. pulmonalis using the microelectrode technique. No spontaneous electrical or mechanical activity was recorded in normal Krebs solution. The current-voltage relation in these smooth muscle cells showed marked rectification. No changes in the isometric tension were observed due to the anodal or cathodal stimulating currents. Strong depolarization of the muscle cells produced only local potentials on the cathelectrotone which never developed into a spike. Noradrenaline (10(-8) g/ml) caused depolarization of the 5-7 mV in the muscle cell membrane and a considerable contraction of the muscle strip as well. Under such conditions the contractile apparatus of the muscle cells became sensible to the resting potential level. Anodal stimulation was accompanied by relaxation of the muscle strip, whereas cathodal stimulation--by its contraction. The alpha-adrenoblocking agent (phentolamine) blocked the effect of noradrenaline evidencing the fact that noradrenaline exerted its excitatory action on the smooth muscle cells of the a. pulmonalis through the alpha-adrenoreceptors.  相似文献   

6.
Functional hyperemia requires the coordination of smooth muscle cell relaxation along and between branches of the arteriolar network. Vasodilation is conducted from cell to cell along the arteriolar wall through gap junction channels composed of connexin protein subunits. Within skeletal muscle, it is unclear whether arteriolar endothelium, smooth muscle, or both cell layers provide the cellular pathway for conduction. Furthermore, the constitutive profile of connexin expression within the microcirculation is unknown. We tested the hypothesis that conducted vasodilation and connexin expression are intrinsic to the endothelium of arterioles (17 +/- 1 microm diameter) that supply the skeletal muscle fibers in the cremaster of anesthetized C57BL/6 mice. ACh delivered to an arteriole (500 ms, 1-microA pulse; 1-microm micropipette) produced local dilation of 17 +/- 1 microm; conducted vasodilation observed 1 mm upstream was 9 +/- 1 microm (n = 5). After light-dye treatment to selectively disrupt endothelium (250-microm segment centered 500 microm upstream, confirmed by loss of local response to ACh while constriction to phenylephrine and dilation to sodium nitroprusside remained intact), we found that conducted vasodilation was nearly abolished (2 +/- 1 microm; P < 0.05). Whole-mount immunohistochemistry for connexins revealed punctate labeling at borders of arteriolar endothelial cells, with connexin40 and connexin37 in all branches and connexin43 only in the largest branches. Immunoreactivity for connexins was not apparent in smooth muscle or in capillary or venular endothelium, despite robust immunolabeling for alpha-actin and platelet endothelial cell adhesion molecule-1, respectively. We conclude that vasodilation is conducted along the endothelium of mouse skeletal muscle arterioles and that connexin40 and connexin37 are the primary connexins forming gap junction channels between arteriolar endothelial cells.  相似文献   

7.
Advances in our understanding of murine airway physiology have been hindered by the lack of suitable, ex vivo, small airway bioassay systems. In this study, we introduce a novel small murine airway bioassay system that permits the physiological and pharmacological study of intrapulmonary bronchial smooth muscle via a bronchial ring (BR) preparation utilizing BR segments as small as 200 microm in diameter. Using this ex vivo BR bioassay, we characterized small airway smooth muscle contraction and relaxation in the presence and absence of bronchial epithelium. In control BRs, the application of mechanical stretch is followed by spontaneous bronchial smooth muscle relaxation. BRs pretreated with methacholine (MCh) partially attenuate this stretch-induced relaxation by as much as 42% compared with control. MCh elicited a dose-dependent bronchial constriction with a maximal tension (E(max)) of 8.7 +/- 0.2 mN at an EC(50) of 0.33 +/- 0.02 microM. In the presence of nifedipine, ryanodine, 2-aminoethoxydiphenyl borate, and SKF-96365, E(max) to MCh was significantly reduced. In epithelium-denuded BRs, MCh-induced contraction was significantly enhanced to 11.4 +/- 1.0 mN with an EC(50) of 0.16 +/- 0.04 microM (P < 0.01). Substance P relaxed MCh-precontracted BR by 62.1%; however, this bronchial relaxation effect was completely lost in epithelium-denuded BRs. Papaverine virtually abolished MCh-induced constriction in both epithelium-intact and epithelium-denuded bronchial smooth muscle. In conclusion, this study introduces a novel murine small airway BR bioassay that allows for the physiological study of smooth muscle airway contractile responses that may aid in our understanding of the pathophysiology of asthma.  相似文献   

8.
The airway smooth muscle from asthmatic airways produces increased amounts and an altered composition of extracellular matrix proteins. The extracellular matrix can in turn influence the phenotype and function of airway smooth muscle cells, affecting the biochemical, geometric, and mechanical properties of the airway wall. This review provides a brief overview of the current understanding of the biology associated with airway smooth muscle interactions with the extracellular matrix. We present future directions needed for the study of cellular and molecular mechanisms that determine the outcomes of extracellular matrix - airway smooth muscle interactions, and discuss their possible importance as determinants of airway function in asthma.  相似文献   

9.
A functional analysis of the striated swim-bladder muscles engaged in the sound production of the toadfish has been performed by simultaneous recording of muscle action potentials, mechanical effects, and sound. Experiments with electrical nerve stimulation were made on excised bladder, while decerebrate preparations were used for studies of reflex activation of bladders in situ. The muscle twitch in response to a single maximal nerve volley was found to be very fast. The average contraction time was 5 msec. with a range from 3 to 8 msec., the relaxation being somewhat slower. The analysis of muscle action potentials with surface electrodes showed that the activity of the muscle fibers running transversely to the long axis of the muscle was well synchronized both during artificial and reflex activation. With inserted metal microelectrodes monophasic potentials of 0.4 msec. rise time and 1.2 to 1.5 msec. total duration were recorded. The interval between peak of action potential and onset of contraction was only 0.5 msec. Microphonic recordings of the characteristic sound effect accompanying each contraction showed a high amplitude diphasic deflection during the early part of the contraction. During relaxation a similar but smaller deflection of opposite phase could sometimes be distinguished above the noise level. The output from the microphone was interpreted as a higher order derivative function of the muscle displacement. This interpretation was supported by complementary experiments on muscle sound in mammalian muscle. The dependence of the sound effects on the rate of muscle contraction was demonstrated by changing the temperature of the preparation and, in addition, by a special series of experiments with repeated stimulation at short intervals. Results obtained by varying the pressure within the bladder provided further evidence for the view that the sound initiated in the muscle is reinforced by bladder resonance. Analysis of spontaneous grunts confirmed the finding of a predominant sound frequency of about 100 per second, which was also found in reflexly evoked grunts. During these, muscle action potentials of the same rate as the dominant sound frequency were recorded, the activity being synchronous in the muscles on both sides. Some factors possibly contributing to rapid contraction are discussed.  相似文献   

10.
Nitric oxide (NO) relaxes most smooth muscle, including the circular smooth muscle (CSM) of the esophagus, whereas in the adjacent longitudinal smooth muscle (LSM), it causes contraction. The second messenger pathways responsible for this NO-induced LSM contraction are unclear, given that these opposing effects of NO are both cGMP dependent. In intestinal LSM, but not CSM, cADP ribose (cADPR)-dependent pathways participate in Ca(2+) mobilization and muscle contraction; whether similar differences exist in the esophagus is unknown. The purpose of this study was to determine whether cADPR plays a role in the NO-mediated contraction of opossum esophageal LSM. Standard isometric tension recordings were performed using both LSM and CSM strips from opossum distal esophagus that were hung in 10-ml tissue baths perfused with oxygenated Krebs solution. cADPR produced concentration-dependent contraction of LSM strips with an EC(50) of 1 nM and peak contraction of 57 +/- 18% of the 60 mM KCl-induced contraction. cADPR had no effect on CSM strips at concentrations up to 10(-6) M. The EC(50) of cADPR caused contraction (18 +/- 2% from initial resting length) of isolated LSM cells. Sodium nitroprusside (SNP; 300 muM) induced contraction of LSM strips that averaged 67 +/- 5% of the KCl response. cADPR antagonists 8-bromo-cADPR and 8-amino-cADPR, as well as ryanodine receptor antagonists ryanodine and tetracaine, significantly inhibited the SNP-induced contraction. In conclusion, in the opossum esophagus, 1) cADPR induces contraction of LSM, but not CSM, and 2) NO-induced contraction of LSM appears to involve a cADPR-dependent pathway.  相似文献   

11.
Reorganization of the cytoskeleton and association of contractile proteins are important steps in modulating smooth muscle contraction. Heat shock protein (HSP) 27 has significant effects on actin cytoskeletal reorganization during smooth muscle contraction. We investigated the role of phosphorylated HSP27 in modulating acetylcholine-induced sustained contraction of smooth muscle cells from the rabbit colon by transfecting smooth muscle cells with phosphomimic (3D) or nonphosphomimic (3G) HSP27. In 3G cells, the initial peak contractile response at 30 s was inhibited by 25% (24.0 +/- 4.5% decrease in cell length, n = 4). The sustained contraction was greatly inhibited by 75% [9.3 +/-.9% decreases in cell length (n = 4)]. Furthermore, in 3D cells, translocation of both PKCalpha and of RhoA was greatly enhanced and resulted in a greater association of PKCalpha-RhoA in the membrane fraction. In 3G transfected cells, PKCalpha and RhoA failed to translocate in response to stimulation with acetylcholine, resulting in an inhibition of association of PKCalpha-RhoA in the membrane fraction. Studies using GST-RhoA fusion protein indicate that there is a direct association of RhoA with PKCalpha and with HSP27. The results suggest that phosphorylated HSP27 plays a crucial role in the maintenance of association of PKCalpha-RhoA in the membrane fraction and in the maintenance of acetylcholine-induced sustained contraction.  相似文献   

12.
Superfused porcine carotid artery segments (approximately 7 cm lengths) were analyzed by 31P-NMR spectroscopic methods to characterize the 31P spectrum of arterial smooth muscle and to determine the influence of passive stretch (intraluminal pressurization, 95-100 mmHg) on cellular phosphatic metabolite levels, intracellular pH and free magnesium concentration ([Mg2+free]i). Equilibrated, single, intact arteries were studied under steady-state, constant flow conditions at 37 degrees C. Phosphoethanolamine, phosphocholine, inorganic phosphate (Pi), phosphocreatine (PCr) and nucleoside triphosphates (NTP), primarily ATP, were the principle metabolites detected in the 31P-NMR spectrum of intact arterial smooth muscle. The concentration of these metabolites and intracellular pH, as determined from the referenced chemical shift of Pi, were unaffected by pressurization. The PCr:Pi ratios determined for nonpressurized (flaccid) and pressurized arteries were 1.2 +/- 0.1 and 1.3 +/- 0.3, respectively. Intracellular pH averaged 7.02 +/- 0.02 (mean +/- 1 S.D.) for flaccid arteries vs. 7.03 +/- 0.05 for pressurized arteries. The upfield chemical shift of the beta-ATP peak, which has been described in other types of smooth muscle, was also observed in these experiments. Interestingly, pressurization significantly shifted the resonance position of this peak, which was interpreted to represent a change in [Mg2+free]i. The average [Mg2+free]i of flaccid artery preparations was computed to be 0.54 +/- 0.03 x 10(-3) M, as compared to 0.99 +/- 0.10 x 10(-3) M for pressurized arteries. This change in [Mg2+free]i was evident within the first hour following pressurization and persisted thereafter. These findings suggest that altering the resting length of vascular smooth muscle produces a change in [Mg2+free]i. This shift in free Mg2+ levels may act as a metabolic signal triggering a change in vascular smooth muscle metabolism, an effect which has been reported to occur in smooth muscle in response to stretch.  相似文献   

13.
The basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) functions in the maintenance of cellular electrolyte and volume homeostasis. NKCC1-deficient (Nkcc1(-/-)) mice were used to examine its role in cardiac function and in the maintenance of blood pressure and vascular tone. Tail-cuff measurements demonstrated that awake Nkcc1(-/-) mice had significantly lower systolic blood pressure than wild-type (Nkcc1(+/+)) mice (114.5 +/- 2.2 and 131.8 +/- 2.5 mmHg, respectively). Serum aldosterone levels were normal, indicating that extracellular fluid-volume homeostasis was not impaired. Studies using pressure transducers in the femoral artery and left ventricle showed that anesthetized Nkcc1(-/-) mice have decreased mean arterial pressure and left ventricular pressure, whereas myocardial contraction parameters were not significantly different from those of Nkcc1(+/+) mice. When stimulated with phenylephrine, aortic smooth muscle from Nkcc1(+/+) and Nkcc1(-/-) mice exhibited no significant differences in maximum contractility and only moderate dose-response shifts. In phasic portal vein smooth muscle from Nkcc1(-/-) mice, however, a sharp reduction in mechanical force was noted. These results indicate that NKCC1 can be important for the maintenance of normal blood pressure and vascular tone.  相似文献   

14.
Vascular resistance and arterial pressure are reduced during normal pregnancy, but dangerously elevated during pregnancy-induced hypertension (PIH), and changes in nitric oxide (NO) synthesis have been hypothesized as one potential cause. In support of this hypothesis, chronic inhibition of NO synthesis in pregnant rats has been shown to cause significant increases in renal vascular resistance and hypertension; however, the cellular mechanisms involved are unclear. We tested the hypothesis that the pregnancy-associated changes in renal vascular resistance reflect changes in contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) of renal arterial smooth muscle. Smooth muscle cells were isolated from renal interlobular arteries of virgin and pregnant Sprague-Dawley rats untreated or treated with the NO synthase inhibitor nitro-L-arginine methyl ester (L-NAME; 4 mg. kg(-1). day(-1) for 5 days), then loaded with fura 2. In cells of virgin rats incubated in Hanks' solution (1 mM Ca(2+)), the basal [Ca(2+)](i) was 86 +/- 6 nM. Phenylephrine (Phe, 10(-5) M) caused a transient increase in [Ca(2+)](i) to 417 +/- 11 nM and maintained an increase to 183 +/- 8 nM and 32 +/- 3% cell contraction. Membrane depolarization by 51 mM KCl, which stimulates Ca(2+) entry from the extracellular space, caused maintained increase in [Ca(2+)](i) to 292 +/- 12 nM and 31 +/- 2% contraction. The maintained Phe- and KCl-induced [Ca(2+)](i) and contractions were reduced in pregnant rats but significantly enhanced in pregnant rats treated with L-NAME. Phe- and KCl-induced contraction and [Ca(2+)](i) were not significantly different between untreated and L-NAME-treated virgin rats or between untreated and L-NAME + L-arginine treated pregnant rats. In Ca(2+)-free Hanks', application of Phe or caffeine (10 mM), to stimulate Ca(2+) release from the intracellular stores, caused a transient increase in [Ca(2+)](i) and a small cell contraction that were not significantly different among the different groups. Thus renal interlobular smooth muscle of normal pregnant rats exhibits reduction in [Ca(2+)](i) signaling that involves Ca(2+) entry from the extracellular space but not Ca(2+) release from the intracellular stores. The reduced renal smooth muscle cell contraction and [Ca(2+)](i) in pregnant rats may explain the decreased renal vascular resistance associated with normal pregnancy, whereas the enhanced cell contraction and [Ca(2+)](i) during inhibition of NO synthesis in pregnant rats may, in part, explain the increased renal vascular resistance associated with PIH.  相似文献   

15.
A Botella  M Delvaux  J Frexinos  L Bueno 《Life sciences》1992,50(17):1253-1261
Effect of galanin and CCK8 were studied on isolated smooth muscle cells obtained from pig, guinea-pig, rat, rabbit and dog ileum circular muscle layer. Galanin as well as CCK8 induced a concentration-dependent contraction of pig, rat, rabbit and guinea-pig ileum smooth muscle cells. Maximal contraction ranged between 23.7 +/- 1.9% and 26.1 +/- 3.1% decrease in cell length from control in the presence of both peptides. This maximal contraction was obtained at 1 nM galanin in pig, rat, rabbit, 1 nM CCK8 in rat, rabbit, guinea-pig, at 10 nM galanin in guinea-pig and 10 nM CCK8 in pig. Concentrations of galanin inducing a half maximal contraction (EC50) ranged between 8 pM and 80 pM in these species. In dog, CCK8 induced a concentration-dependent contraction of ileum smooth muscle cells, with a maximal contraction (24.5 +/- 2.3%) at 1nM and an EC50 of 50 pM while galanin inhibited cell contraction induced by CCK8. The CCK-induced contraction was abolished at 10 nM galanin and 10 nM VIP. Concentrations of galanin and VIP inducing a half-maximal relaxation of contracted cells were 2 pM and 3 pM respectively. It is concluded that galanin may induce cell contraction of pig, guinea-pig, rat and rabbit ileum circular muscle layer and cell relaxation of dog ileum by a direct myogenic effect.  相似文献   

16.
Smooth muscle membrane potential and tension in rat isolated small mesenteric arteries (inner diameter 100-200 microm) were measured simultaneously to investigate whether the intensity of smooth muscle stimulation and the endothelium influence responses to exogenous K+. Variable smooth muscle depolarization and contraction were stimulated by titration with 0.1-10 microM phenylephrine. Raising external K+ to 10.8 mM evoked correlated, sustained hyperpolarization and relaxation, both of which were inhibited as the smooth muscle depolarized and contracted to around -38 mV and 10 mN, respectively. At these higher levels of stimulation, raising the K+ concentration to 13.8 mM still hyperpolarized and relaxed the smooth muscle. Relaxation to endothelium-derived hyperpolarizing factor, released by ACh, was not altered by the level of stimulation. In endothelium-denuded arteries, the concentration-relaxation curve to K+ was shifted to the right but was not depressed. In denuded arteries, relaxation to K+ was unaffected by the extent of prior stimulation and was blocked with 0.1 mM ouabain but not with 30 microM Ba2+. The ability of K+ to stimulate simultaneous hyperpolarization and relaxation in the mesenteric artery is consistent with a role as an endothelium-derived hyperpolarizing factor activating inwardly rectifying K+ channels on the endothelium and Na+-K+-ATPase on the smooth muscle cells.  相似文献   

17.
We examined the direct effect of motilin on longitudinal and circular smooth muscle cells isolated from the guinea pig small intestine. In addition, the effects of 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxy-benzoate hydrochloride (TMB-8, an inhibitor of intracellular Ca(2+)-release), verapamil (a voltage-dependent Ca(2+)-channel blocker), and removal of extracellular Ca2+ were investigated to evaluate the role of intracellular Ca2+ stores and extracellular Ca2+ on the muscle contraction induced by motilin. The effects of atropine (a muscarinic receptor antagonist), spantide (a substance P receptor antagonist) and loxiglumide (a CCK-receptor antagonist) were also examined to determine whether the motilin-induced contraction was independent of those receptors. Motilin induced a contraction of the longitudinal and circular smooth muscle cells in a dose-dependent manner with the maximal effect attained after 30 seconds of incubation. The ED50 values were 0.3 nM and 0.05 nM, respectively. TMB-8 suppressed completely the motilin-induced contraction of both types of smooth muscle cells. Verapamil had only a slight suppressive effect. Removal of extracellular Ca2+ did not have any significant influence on motilin-induced contraction. The contractile response to motilin was not affected by atropine, spantide or loxiglumide. Our findings showed that:1) motilin has a direct contractile effect on both longitudinal and circular smooth muscle cells; 2) this contractile effect is not evoked via muscarinic, substance P or CCK receptors, and 3) the intracellular release of Ca2+ plays an important role in the contractile response to motilin on both types of smooth muscle cells.  相似文献   

18.
Reduction of uterine perfusion pressure (RUPP) during late pregnancy has been suggested to trigger increases in renal vascular resistance and lead to hypertension of pregnancy. We investigated whether the increased renal vascular resistance associated with RUPP in late pregnancy reflects increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) and contraction of renal arterial smooth muscle. Single smooth muscle cells were isolated from renal interlobular arteries of normal pregnant Sprague-Dawley rats and a rat model of RUPP during late pregnancy. The cells were loaded with fura 2 and both cell length and [Ca(2+)](i) were measured. In cells of normal pregnant rats incubated in Hanks' solution (1 mM Ca(2+)), ANG II (10(-7) M) caused an initial increase in [Ca(2+)](i) to 414 +/- 13 nM, a maintained increase to 149 +/- 8 nM, and 21 +/- 1% cell contraction. In RUPP rats, the initial ANG II-induced [Ca(2+)](i) (431 +/- 18 nM) was not different from pregnant rats, but both the maintained [Ca(2+)](i) (225 +/- 9 nM) and cell contraction (48 +/- 2%) were increased. Membrane depolarization by 51 mM KCl and the Ca(2+) channel agonist BAY K 8644 (10(-6) M), which stimulate Ca(2+) entry from the extracellular space, caused maintained increases in [Ca(2+)](i) and cell contraction that were greater in RUPP rats than control pregnant rats. In Ca(2+)-free (2 mM EGTA) Hanks' solution, the ANG II- and caffeine (10 mM)-induced [Ca(2+)](i) transient and cell contraction were not different between normal pregnant and RUPP rats, suggesting no difference in Ca(2+) release from the intracellular stores. The enhanced maintained ANG II-, KCl- and BAY K 8644-induced [Ca(2+)](i) and cell contraction in RUPP rats compared with normal pregnant rats suggest enhanced Ca(2+) entry mechanisms of smooth muscle contraction in resistance renal arteries and may explain the increased renal vascular resistance associated with hypertension of pregnancy.  相似文献   

19.
Raising extracellular K+ concentration ([K+](o)) around mesenteric resistance arteries reverses depolarization and contraction to phenylephrine. As smooth muscle depolarizes and intracellular Ca(2+) and tension increase, this effect of K+ is suppressed, whereas efflux of cellular K+ through Ca(2+)-activated K+ (K(Ca)) channels is increased. We investigated whether K+ efflux through K(Ca) suppresses the action of exogenous K+ and whether it prestimulates smooth muscle Na(+)-K(+)-ATPase. Under isometric conditions, 10.8 mM [K+](o) had no effect on arteries contracted >10 mN, unless 100 nM iberiotoxin (IbTX), 100 nM charybdotoxin (ChTX), and/or 50 nM apamin were present. Simultaneous measurements of membrane potential and tension showed that phenylephrine depolarized and contracted arteries to -32.2 +/- 2.3 mV and 13.8 +/- 1.6 mN (n = 5) after blockade of K(Ca), but 10.8 mM K+ reversed fully the responses (107.6 +/- 8.6 and 98.8 +/- 0.6%, respectively). Under isobaric conditions and preconstriction with phenylephrine, 10.7 mM [K+](o) reversed contraction at both 50 mmHg (77.0 +/- 8.5%, n = 9) and 80 mmHg (83.7 +/- 5.5%, n = 5). However, in four additional vessels at 80 mmHg, raising K+ failed to reverse contraction unless ChTX was present. Increases in isometric and decreases in isobaric tension with phenylephrine were augmented by either ChTX or ouabain (100 microM), whereas neither inhibitor altered tension under resting conditions. Inhibition of cellular K+ efflux facilitates hyperpolarization and relaxation to exogenous K+, possibly by indirectly reducing the background activation of Na(+)-K(+)-ATPase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号