首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
Biochemical Alterations of Dermatophytes during Growth   总被引:1,自引:0,他引:1       下载免费PDF全文
Alterations in the biochemical constituents of mycelia were studied during the growth, development, and starvation of Microsporum quinckeanum. On the basis of dry weight, growth of this dermatophyte could be divided into four phases: lag, log, stationary, and death. The percentage of total nitrogen, inorganic phosphorus, ribonucleic acid (RNA), and protein increased rapidly during the lag phase. The percentage of protein remained constant after the initial increase; however, inorganic phosphate and RNA decreased in older mycelia. Acid-soluble materials in the cells increased in concentration as the organism aged. Chitin was present in the spores at a much higher concentration than in the mycelia. The percentage of this compound decreased rapidly until the end of the lag phase. An increase and subsequent decrease in per cent chitin occurred during the log phase. Inorganic phosphorus in the mycelia increased from the value in the spore stage to a maximum in the early log phase, and then decreased rapidly during the remainder of the growth cycle. Compounds involved in protein synthesis increased rapidly during the lag phase of growth. Changes in chemical composition of the mold during starvation indicate that carbohydrate does not form the principal endogenous reserve of M. quinckeanum, whereas lipids may represent the primary reserve material.  相似文献   

2.
3.
The adenosine triphosphate (ATP) content of Arthrobactery crystallopoietes was measured during growth, starvation and recovery from starvation. During exponential growth of the cells as spheres in a glucose salts medium, the level of ATP per cell remained constant at 8.0×10-10 g/cell. Morphogenesis to rodshaped cells and an increased growth rate following addition of casein hydrolysate was accompanied by an almost two-fold increase in the ATP level. As division of the rod-shaped cells proceeded, the level of ATP declined. After growing as rods for 12–14 h the cells underwent fragmentation to spheres during which time the ATP level again increased to the original value of 8.0×10-10 g/cell. As the spherical cells resumed growth on the residual glucose, their ATP content declined for a short period and then remained relatively constant. During starvation of sphere or rod-shaped cells for one week, the ATP level declined by approximately 70% during the first 40–50 h and then remained constant. The endogenous metabolism rate of spherical cells declined during the first 10–20 h of starvation and then remained constant at approximately 0.02% of the cell carbon being utilized per h. Addition of glucose to spherical cells which had been starved for one week increased both the ATP content per cell and their rate of endogenous metabolism. The ATP content fluctuated and then remained at a level higher than maintained during starvation while endogenous metabolism quickly declined.Non-Standard Abbreviations ATP adenosine triphosphate - GS glucose mineral salts - HC casein hydrolysate - PVP polyvinylpyrrolidone - DMSO dimethylsulfoxide - MOPS morpholinopropane sulfonic acid - EDTA ethylene diaminetetraacetic acid  相似文献   

4.
5.
Oxidative metabolism of dermatophytes   总被引:1,自引:1,他引:0       下载免费PDF全文
A method for preparing young, actively respiring dermatophyte mycelia was obtained through the use of concentrated spore inocula and short growth periods in static culture. These hyphal elements were uniform in appearance, and vacuoles were absent. Concentrated mycelial suspensions were obtained which could be transferred easily and accurately. Glucose stimulated oxygen uptake in young mycelia which had been grown in a medium with low carbohydrate content. The level of endogenous respiration was affected by exogenous glucose only when this substrate stimulated oxygen uptake by less than 14%. Low nicotinamide adenine dinucleotide phosphate (NADP) dehydrogenase activity was noted in microconidia which have a low endogenous Qo2 value, whereas the activity of this enzyme was greater in macroconidia and mycelia which possess higher endogenous Qo2 values. Microsporum gypseum oxidizes 50% of exogenous glucose and assimilates the remainder. A large percentage of this substrate was assimilated into nitrogenous substances.  相似文献   

6.
7.
This report is concerned with the time course of changes of several enzymes during endogenous respiration. It was observed that enzymes such as deaminases, amidases and transaminases found in the mycelia increased in activity more or less during endogenous respiration. It was assumed that enzyme formation occurred as the result of glucose starvation or depression of carbohydrate metabolism during endogenous respiration of the mold mycelia on buffer solution.  相似文献   

8.
9.
A study was made of the effects of adenosine 3',5'-cyclic monophosphate (cAMP), guanosine 3',5'-cyclic monophosphate (cGMP) and choline on the morphology and growth of a wild-type strain (A 3/5) and a highly branched, 'colonial' mutant strain (C106) of Fusarium graminearum. Addition of up to 50 mM-cAMP or cGMP to the medium had no effect on the specific growth rate of strain A 3/5. For strain A 3/5, but not for strain C106, exogenous cAMP caused significant decreases in both mean hyphal extension rate (E) and hyphal growth unit length (G), i.e. cAMP caused mycelia of strain A 3/5 to branch profusely. By contrast, for both strains, cGMP caused significant increases in both E and G, i.e. exogenous cGMP caused mycelia to branch more sparsely. The effects of exogenous cGMP and choline in increasing E and G were synergistic, but the effects of cGMP and choline counteracted the effect of cAMP. The mutant phenotype of strain C106 was not correlated with altered levels of endogenous cAMP or cGMP.  相似文献   

10.
Nutrient sensing and utilisation are fundamental for all life forms. As heterotrophs, fungi have evolved a diverse range of mechanisms for sensing and taking up various nutrients. Despite its importance, only a limited number of nutrient receptors and their corresponding ligands have been identified in fungi. G‐protein coupled receptors (GPCRs) are the largest family of transmembrane receptors. The Aspergillus nidulans genome encodes 16 putative GPCRs, but only a few have been functionally characterised. Our previous study showed the increased expression of an uncharacterised putative GPCR, gprH, during carbon starvation. GprH appears conserved throughout numerous filamentous fungi. Here, we reveal that GprH is a putative receptor involved in glucose and tryptophan sensing. The absence of GprH results in a reduction in cAMP levels and PKA activity upon adding glucose or tryptophan to starved cells. GprH is pre‐formed in conidia and is increasingly active during carbon starvation, where it plays a role in glucose uptake and the recovery of hyphal growth. GprH also represses sexual development under conditions favouring sexual fruiting and during carbon starvation in submerged cultures. In summary, the GprH nutrient‐sensing system functions upstream of the cAMP‐PKA pathway, influences primary metabolism and hyphal growth, while represses sexual development in A. nidulans.  相似文献   

11.
  1. Washed cell suspensions of Bdellovibrio bacteriovorus harvested shortly after lysis of their substrate organisms and shaken in buffer have a constant and high endogenous respiration rate for a bout 6 h which then declines sharply to a rate approximately 10% of the original. Viability of cell suspensions shows little change over the first 4–6 h and then decreases by some 50% in 10 h.
  2. Over the first 5–6 h of starvation there is a loss of about 50% of total cell carbon. This loss is distributed about equally between CO2 and small molecules released into the suspending buffer. The protein and nucleic acid contents of the cells decrease concomitantly from time zero during starvation while DNA content remains constant. Ribosomal profiles show a rapid degradation of ribosomes.
  3. In the presence of glutamate or glutamate plus a balanced amino acid mixture, loss of cell material and loss of viability is partially or completely prevented. There is extensive protein turnover when glutamate and an amino acid mixture are available to the bdellovibrio.
  4. The pattern of changes observed in B. bacteriovorus during starvation is compared to reported changes in other species of bacteria, and the significances of its high endogenous respiration and sensitivity to starvation are discussed.
  相似文献   

12.
A comparison was made of the morphology and growth kinetics of hyphae of differentiated and undifferentiated mycelia of Neurospora crassa. Undifferentiated mycelia were formed during exponential growth on solid media or submerged culture. Hyphae at the margin of differentiated mycelia (colonies) differed from undifferentiated mycelia in diameter, extension rate, extension zone length, and intercalary and apical compartment length. The mean hyphal extension rate (E) of an undifferentiated mycelium was a function of the length of the mycelium's hyphal growth unit (G) and the organism's specific growth rate (alpha). Thus, E=Galpha.  相似文献   

13.
The role of ribonucleic acid (RNA) synthesis in the development of sporangia in the saprolegniaceous mold Achlya was studied. Methods were developed for growing and treating large populations of mycelia so that the hyphal tips would differentiate into sporangia with considerable synchrony. Under the starvation conditions imposed for the differentiation of sporangia, net RNA, deoxyribonucleic acid (DNA), and protein synthesis ceased. However, incorporation of radioactive precursors into RNA continued at a high rate throughout the period of differentiation, showing that the enzymatic mechanism for RNA synthesis was still in an active state. Actinomycin D inhibited the differentiation of sporangia and the incorporation of labeled precursors into RNA. The level of actinomycin used did not inhibit the normal outgrowth and branching of the mycelia that occurred during differentiation. Thus, DNA-dependent RNA synthesis was required for the differentiation of sporangia. Sucrose gradient analysis of newly synthesized RNA showed that only the ribosomal and soluble fractions of RNA were labeled during vegetative growth. During the differentiation of sporangia, ribosomal and soluble RNA fractions were also labeled, and, in addition, a heterodisperse fraction of labeled RNA which was heavier than ribosomal RNA appeared; this fraction was not evident in the newly synthesized RNA from vegetative mycelia.  相似文献   

14.
A link between vacuolation and fragmentation of Penicillium chrysogenum mycelia in stirred tank submerged fermentations is reported. Quantitative information on vocuolation and morphology was obtained by image analysis. In fed-batch fermentations the coincidence of the events of rapid vacuolation and the fall of the mean total and main hyphal lengths suggests that hyphal fragmentation is not necessarily due to "shear" alone. The physiological state of the hyphae, characterized by the proportions of vaccuoles, was found to have a significant influence on the breakage of mycelial hyphae, It was found that the fragmentation was greater when the hyphae became heavily vacuolated following nutrient limitation in the culture, i.e., during the switch from the rapid growth to the production phase. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
Batch- and continuous-cultured cell suspensions of the anaerobic ruminal bacteriumMegasphaera elsdenii strain T-81 were subjected to total nutrient starvation, during which time changes in cell viability, cell composition, and endogenous fermentation acids were monitored. The populations exhibited poor survival capabilities with a 50% survival time of 9–13 h. The primary substrates used for endogenous metabolism appeared to be cellular RNA, carbohydrate, and possibly protein. The types and amounts of major fermentation acids (acetic, butyric, caproic) released from starving cells varied depending upon initial growth conditions and starvation time. The data suggest that growth conditions affect cell composition and have important roles in survival ofM. elsdenii.  相似文献   

16.
Studies were made of the growth kinetics, morphology and phospholipid composition of two strains of Fusarium graminearum, a wild-type strain (A3/5) and a highly branched variant (C106) which arose spontaneously during cultivation of A3/5. No significant difference was observed between the hyphal diameters of the two strains and therefore increased branching of C106 could not be explained in the terms of an increase in hyphal radius in the absence of a change in hyphal growth unit volume. The two strains had the same specific growth rate in batch culture and this was not affected by the addition of up to 1.5 mM-choline to the medium. However, choline increased the mean hyphal extension rate and colony radial growth rate of both strains and this response was correlated with the formation of mycelia which were more sparsely branched than mycelia grown on medium lacking choline. Addition of betaine, choline, ethanolamine, monomethylethanolamine or dimethylethanolamine (but not serine, glycine, dimethylglycine, methylamine, hydroxylamine or beta-hydroxyethylhydrazine) to the medium also resulted in appreciable increases in the colony radial growth rates of A3/5 (increased by about 130% for choline) and C106 (increased by about 25% for choline). No significant difference was observed between the phospholipid compositions of the two strains, and the addition of 100 microM-choline to the medium had no significant effect on the phospholipid composition of either strain.  相似文献   

17.
Most fish species are regularly subjected to periods of starvation during which a reduction of energy turnover might be favourable for the animal. This reduction of energy flux may be achieved by changes in thermal behaviour and/or swimming activity. We investigated such behavioural changes during starvation and subsequent refeeding in roach, Rutilus rutilus, with respect to energetic benefits and growth maximisation. Roach, acclimated to a wide range of temperatures (4, 12, 20, 24, 27 and 30 °C), were fed to excess, subjected to 3 weeks of starvation and subsequently refed in order to determine the temperature dependence of feeding rates, growth rates and conversion efficiency (K1) under control conditions and during compensatory growth. When exposed to a thermal gradient, control animals preferentially selected a temperature of 26.8ǂ.9 °C, which is in the range of the optimal temperatures for feeding, growth and conversion efficiency. Starving fish showed a distinct circadian pattern of the mean selected temperature (MST). They migrated to cooler water in the dark (MSTdark=22.8ǃ.1 °C) but returned to warmer water during daytime. This behaviour may be regarded as a trade-off between the potentially higher food density in warmer water areas and the energetic benefit of selecting cooler water patches. The circadian pattern of MST was gradually abandoned upon refeeding and control values were reached again after 3 weeks. Energetically more effective than behavioural hypothermia was the reduction of swimming activity. During starvation, activity peaks were slightly lower than under control conditions and mean daily activity decreased by about 50%. Swimming velocity, however, was not affected by feeding regime. After a period of starvation fish showed compensatory growth at all temperatures, even below 12 °C, where these animals normally do not grow. This suggests that after a period of starvation the critical temperature for growth shifts to lower values.  相似文献   

18.
19.
In the presence of MgSo4 as osmotic stabilizer, nucleated protoplasts of Schizophyllum commune developed a large vacuole and could be isolated on the basis of their low buoyant density. All these protoplasts were capable of wall regeneration and about 50 percent reverted to the hyphal mode of growth in liquid medium. The kinetics of the formation of three main cell-wall components, S-glucan (alpha-1,3-glucan), R-glucan (beta-1,3, beta-1,6-glucan) and chitin were studied from the onset of regeneration. S-glucan and chitin accumulation as well as RNA and protein synthesis started simultaneously after a short lag, but R-glucan formation was delayed. The reversion of hyphal tubes only began after several hours of rapid R-glucan synthesis. Cycloheximide (0.5 mug/ml), inhibiting protein synthesis by 98% inhibited the formation of R-glucan and the reversion to hyphal growth but the formation of chitin and S-glucan did start and continued seemingly unimpaired for several hours. This indicates that the enzymes responsible for the synthesis of S-glucan and chitin remained intact during protoplast preparation. Polyoxin D inhibited both the synthesis of chitin and R-glucan and also the reversion to hyphal growth. However, the synthesis of S-glucan was not suppressed. These inhibitor studies as well as the kinetics of R-glucan formation during normal regeneration suggest that the synthesis of R-glucan is required for the initiation of hyphal morphogenesis.  相似文献   

20.
Accurate estimates of mycelial exudation in time and space are crucial for the assessment of ectomycorrhizal involvement in biogeochemical processes. Knowledge of exudation from mycelia of ectomycorrhizal fungi is still limited, especially for fungi in symbiosis with a host. Pinus sylvestris seedlings colonized by Hebeloma crustuliniforme were grown in aseptic multicompartment dishes. This novel system enabled identification of exudates originating only from extramatrical mycelium. At harvest, hyphal density and numbers were estimated using microscopic imaging. A fractal geometric approach was adopted for calculation of exudation rates. The main compounds identified were oxalate and ferricrocin. The exudation rate for oxalate was 19 +/- 3 fmol per hyphal tip h(-1) (mean +/- standard error of the mean) or 488 +/- 95 fmol hyphal mm(-2) h(-1). Ferricrocin rates were approx. 10 000 times lower. The fractal dimension (D) of the mycelia was 1.4 +/- 0.1, suggesting an explorative growth. Potassium nutrition was a significant regulatory factor for ferricrocin but not oxalate. The results suggest that hyphal exudation may alter the chemical conditions of soil microsites and affect mineral dissolution. Calculations also indicated that oxalate exudation may be a significant carbon sink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号