首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 804 毫秒
1.
Experiments were performed in rat hippocampal slices. Activity of individual CA3 pyramidal neurons and field potentials in the CA1 areas were recorded extracellularly. The collision technique was applied to detect the antidromic origin of the background action potentials in the somata of CA3 neurons. Threshold stimulation of terminals of the Schaffer collaterals in the stratum radiatum of the CA1 area was applied to study their excitability during the CA1 long-term potentiation. During the long-term potentiation, antidromic action potentials appeared in the somata of the CA3 neurons. The obtained evidence suggests that the synaptic potentiation is accompanied by an enhancement of axon terminal excitability resulting in generation of the action potentials.  相似文献   

2.
The influence of 5,6-dihydroxytryptamine (5,6-DHT), which selectively destroyed serotonin terminals, and p-chlorphenylalanine, which inhibited serotonin synthesis, was studied on the long-term sensitization (LTS) in a snail. The membrane mechanisms were analyzed by measuring electrical characteristics of command neurons of defensive behavior LPa3, RPa3, LPa2, and RPa2. Snails injected with saline served as an active control. It was shown that the injected drugs inhibited the LTS in certain concentrations. A significant increase was observed in the membrane potential and the threshold of the action potential generation in the command neurons after 5,6-DHT injection in the doses of 20 and 30 mg/kg (in comparison with the active control). Sensitization of snails injected with saline solution led to the LTS and decrease in the membrane and threshold potentials of the command neurons. After the LTS, changes in membrane and threshold potentials in snails injected with 5,6-DHT were negligible in comparison with those injected with 5,6-DHT but without the LTS. Neither the LTS nor subsequent learning resulted in a further decrease in membrane and threshold potentials. Thus, the neurotoxin injection led to an increase in excitability of command neurons and their depolarization, and the LDS did not elicit further excitability increase. Since the shifts of the threshold and membrane potentials were the same, it was concluded that the increase in membrane excitability was induced by the depolarizing shift of the membrane potential.  相似文献   

3.
Effects of some neuropeptides identified in the brain of hibernators (TSKYR, TSKY, DY) and of monoaminergic neurotransmitters (noradrenaline and serotonin) on responses of the medial septal neurons evoked by intraseptal electrical stimulation were analyzed in slices taken from the ground squirrels with chronic basal undercutting of the septum. Despite the elimination of direct contacts with the preoptic area and afferents ascending in the medial forebrain bundle, the neurons retained almost normal level of reactivity and distribution of the reaction types. The neuropeptides effectively modulated neuronal responses of various types, including oligosynaptic short-latency single-spike responses. The latter were strongly facilitated by the neuropeptides. As a rule, changes in the responses to electrical stimulation were independent of the spontaneous activity shifts (in 78% of the tests). It was suggested that the neuropeptides exert a double influence on the septal neurons: direct nonsynaptic effects on the pacemaker potential responsible for the background activity and modulation of synaptic processes. Our experiments showed that descending influences of the septo-hippocampal system are not crucial for the entrance into the hibernation state and its tonic maintenance. The influences of the thermoregulatory--circadian structures of the preoptico-hypothalamic area determine the paradoxically increased latent excitability of septal neurons that allows the septo-hippocampal system to gate external stimuli and organize arousal of the forebrain during hibernation in case of emergency.  相似文献   

4.
Recent evidence from pharmacological studies support the view that dopaminergic afferents to the septal complex which originate from the mesencephalic A10 area, exert a tonic inhibitory control over the activity of the septal-hippocampal cholinergic neurons. Accordingly one could predict that the release from such an inhibition by lesion of the septal dopaminergic terminals might improve performance in tasks known to be related to hippocampal cholinergic activity. In order to test this hypothesis mice of the C57BL/6 strain received a bilateral injection of 6-hydroxydopamine in the lateral septal nucleus; they were compared to subjects receiving saline and to unoperated control mice in tests performed in a T-maze: spontaneous alternation, acquisition and reversal of spatial discrimination. In all tasks, performance of experimental subjects was improved relative to controls. However, subsequent experiments showed that this improvement was not observed when visual (light/dark) discrimination was used. Finally, 6-hydroxydopamine injected mice exhibited a substantial increase in hippocampal sodium-dependent high affinity choline uptake (+ 16.7%). These results are discussed in relation to the three main theories concerning the role of the septo-hippocampal complex and cholinergic system in the control of behavior (i.e. Pavlovian internal inhibition, spatial mapping and working memory). Only the theory of spatial cognition seems to account for our present findings.  相似文献   

5.
Changes in presynaptic terminal axon excitability produced by enflurane in the rat hippocampal slice preparation were investigated by stimulation of Schaeffer collateral terminal axons and by recording single unit antidromic action potentials. Stimulating pulses were preceded by conditioning hyperpolarizing or depolarizing current pulses. A plot of net threshold for action potential generation against the conditioning pulse yields an "accommodation curve;" changes in this curve can be used to assess the mechanism by which changes in excitability are produced. Enflurane, at a concentration equivalent to approximately equal to 1.3 times the minimum alveolar concentration, reduced excitability of terminal axons and increased accommodation in a manner consistent with a possible change in the inactivation of gNa.  相似文献   

6.
Total destruction of the septum, the dorsal hippocampus (DH), or the lesion of the DH combined with that of the medial septal nucleus in rats was shown to facilitate elaboration of conditioned avoidance responses in a shuttle-box due to an increase of general excitability of the animals, and to cause significant impairment of internal inhibition formation. Lesions of the medial or the lateral septal nuclei as well as a combined lesion of the DH and the lateral septal nucleus had no significant effect on conditioning and internal inhibition elaboration. Therefore the septo-hippocampal connections had different functional directions during active defensive behaviour.  相似文献   

7.
Electrical stimulation of the central nervous system creates both orthodromically propagating action potentials, by stimulation of local cells and passing axons, and antidromically propagating action potentials, by stimulation of presynaptic axons and terminals. Our aim was to understand how antidromic action potentials navigate through complex arborizations, such as those of thalamic and basal ganglia afferents-sites of electrical activation during deep brain stimulation. We developed computational models to study the propagation of antidromic action potentials past the bifurcation in branched axons. In both unmyelinated and myelinated branched axons, when the diameters of each axon branch remained under a specific threshold (set by the antidromic geometric ratio), antidromic propagation occurred robustly; action potentials traveled both antidromically into the primary segment as well as "re-orthodromically" into the terminal secondary segment. Propagation occurred across a broad range of stimulation frequencies, axon segment geometries, and concentrations of extracellular potassium, but was strongly dependent on the geometry of the node of Ranvier at the axonal bifurcation. Thus, antidromic activation of axon terminals can, through axon collaterals, lead to widespread activation or inhibition of targets remote from the site of stimulation. These effects should be included when interpreting the results of functional imaging or evoked potential studies on the mechanisms of action of DBS.  相似文献   

8.
In decerebrated spinal cats, the effects of iontophoretically applied calcium antagonists, cobalt, manganese and verapamil, and of strontium, which reportedly can act like a calcium agonist, were tested on post-tetanic depression of group I afferent terminal excitability. The actions of these agents on the duration of action potentials in the afferent terminals were determined by a recently described method (8). The calcium antagonists reduced the maximum post-tetanic depression of the antidromic compound action potentials and accelerated the recovery of these potentials from the depression. Strontium, on the other hand, had the opposite effects. The duration of afferent terminal action potentials appeared to increase following a tetanic stimulation. This enhancement in the duration of the action potentials was facilitated by strontium and counteracted by calcium antagonists. These observations indicate that calcium influx into primary afferent terminals is increased following a tetanic stimulation and that post-tetanic hyperpolarization of primary afferent terminals may be, at least partly, dependent on the increased accumulation of calcium in the terminals.  相似文献   

9.
Presynaptic inhibition of primary afferents can be evoked from at least three sources in the adult animal: 1) by stimulation of several supraspinal structures; 2) by spinal reflex action from sensory inputs; or 3) by the activity of spinal locomotor networks. The depolarisation in the intraspinal afferent terminals which is due, at least partly, to the activation of GABA(A) receptors may be large enough to reach firing threshold and evoke action potentials that are antidromically conducted into peripheral nerves. Little is known about the development of presynaptic inhibition and its supraspinal control during ontogeny. This article, reviewing recent experiments performed on the in vitro brainstem/spinal cord preparation of the neonatal rat, demonstrates that a similar organisation is present, to some extent, in the new-born rat. A spontaneous activity consisting of antidromic discharges can be recorded from lumbar dorsal roots. The discharges are generated by the underlying afferent terminal depolarizations reaching firing threshold. The number of antidromic action potentials increases significantly in saline solution with chloride concentration reduced to 50% of control. Bath application of the GABA(A) receptor antagonist, bicuculline (5-10 microM) blocks the antidromic discharges almost completely. Dorsal root discharges are therefore triggered by chloride-dependent GABA(A) receptor-mediated mechanisms; 1) activation of descending pathways by stimulation delivered to the ventral funiculus (VF) of the spinal cord at the C1 level; 2) activation of sensory inputs by stimulation of a neighbouring dorsal root; or 3) pharmacological activation of the central pattern generators for locomotion evokes antidromic discharges in dorsal roots. VF stimulation also inhibited the response to dorsal root stimulation. The time course of this inhibition overlapped with that of the dorsal root discharge suggesting that part of the inhibition of the monosynaptic reflex may be exerted at a presynaptic level. The existence of GABA(A) receptor-independent mechanisms and the roles of the antidromic discharges in the neonatal rat are discussed.  相似文献   

10.
Characteristics of antidromic action potentials of neurons of the paraventricular and supraoptic nuclei of the rat hypothalamus were studied during stimulation of the hypothalamo-hypophyseal tract by stimuli of varied amplitude and frequency. Step-like changes were found in spike latency in response to an increase in strength (up to 1.5–2.5 thresholds) or frequency (over 100 Hz) of stimulation, as well as cases with variation of the degree of division of the peak into A and B components. Injection of leu-enkephalin analog into the third ventricle or intravenous injection of NaCl solution (1 M) caused reversible changes in the level of excitability of antidromically activated neurons: leu-enkephalin mainly increased the latent period and threshold of action potential generation and reduced the reproducible frequency of stimulation to 10 Hz, whereas NaCl had the opposite effect. The results indicate that when the adopted criteria of antidromic identification of neurosecretory cells are used the level of their excitability must be taken into account.A. A. Ukhtomskii Physiological Research Institute, A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 14, No. 6, pp. 585–591, November–December, 1982.  相似文献   

11.
Neuronal plasticity and its development were investigated at pyramidal neurons in the cortical slices of rats. The threshold and probability of firing spikes were measured by using whole-cell recording to assess neuronal excitability. Postsynaptic high frequency activity (HFA) at the pyramidal neurons, evoked by 20 trains (250-ms interval) of five depolarization-pulses (1 ms) at 100 Hz, persistently lowered the threshold and increased the probability of firing spikes. After long-term enhancement of neuronal excitability by HFA was stable, another HFA induced further enhancement. Infusing 1 mM 1,2-bis(2-aminophenoxy)-ethane-N, N,N',N'-tetraacetic acid or 100 microM CaMKII(281-301) into the recording neurons prevented HFA-induced long-term enhancement of neuronal excitability. The infusion of 40 microM calcineurin autoinhibitory peptide enhanced neuronal excitability, which occluded HFA effect. HFA-induced long-term enhancement of intrinsic excitability expressed at most pyramidal neurons after postnatal day (PND) 14, but not at those before PND 9. Our results show a new type of neuronal plasticity induced by physiological activity at cortical neurons, which requires calcium-dependent protein phosphorylation and develops during postnatal period. An upregulation of intrinsic excitability at cortical neurons facilitates their activity and broadens signal codes; consequently, their computational ability is upgraded.  相似文献   

12.

Background

Previous work by our lab and others has implicated glutamate as a major excitatory signal to gonadotropin hormone releasing hormone (GnRH) neurons, with gamma amino butyric acid (GABA) serving as a potential major inhibitory signal. However, it is unknown whether GABAergic and/or glutamatergic synaptic appositions to GnRH neurons changes on the day of the proestrous LH surge or is affected by aging.

Methodology/Principal Findings

To examine this question, synaptic terminal appositions on GnRH neurons for VGAT (vesicular GABA transporter) and VGLUT2 (vesicular glutamate transporter-2), markers of GABAergic and glutamatergic synaptic terminals, respectively, was examined by immunohistochemistry and confocal microscopic analysis in young and middle-aged diestrous and proestrous rats. The results show that in young proestrous rats at the time of LH surge, we observed reciprocal changes in the VGAT and VGLUT2 positive terminals apposing GnRH neurons, where VGAT terminal appositions were decreased and VGLUT2 terminal appositions were significantly increased, as compared to young diestrus control animals. Interestingly, in middle-aged cycling animals this divergent modulation of VGAT and VGLUT2 terminal apposition was greatly impaired, as no significant differences were observed between VGAT and VGLUT2 terminals apposing GnRH neurons at proestrous. However, the density of VGAT and VGLUT2 terminals apposing GnRH neurons were both significantly increased in the middle-aged animals.

Conclusions/Significance

In conclusion, there is an increase in glutamatergic and decrease in GABAergic synaptic terminal appositions on GnRH neurons on proestrus in young animals, which may serve to facilitate activation of GnRH neurons. In contrast, middle-aged diestrous and proestrous animals show a significant increase in both VGAT and VGLUT synaptic terminal appositions on GnRH neurons as compared to young animals, and the cycle-related change in these appositions between diestrus and proestrus that is observed in young animals is lost.  相似文献   

13.
A biophysical explanation of the reduced excitability in neurons exposed to a constant magnetic field is based on an extended neuronal membrane model. In the presence of a constant magnetic field, reduced excitability is manifested as an increase in the excitation threshold and a decrease in the frequency of action potentials. The proposed explanation for the reduced excitability rests on the well-known Hall effect. The separation of charges resulting from the Lorentz force exerted on moving intracellular ions leads to the formation of a Hall electric field in a direction perpendicular to that of action-potential transmission. Consequently, the ion current for discharging the membrane capacitance is reduced in the presence of a magnetic field, thereby limiting initiation of the action potential. The validity of the proposed biophysical explanation is justified analytically and verified by simulations based on the Hodgkin and Huxley model for the electrical excitability of a neuron. Based on derivation of the current segregation ratio α characterizing the reduction in the stimulating current from first principles, the equivalent circuit model of the neuronal membrane is extended to account for the reduced excitability of neurons exposed to a constant magnetic field.  相似文献   

14.
The calyx of Held synapse is a giant axosomatic synapse that has a fast relay function within the sound localization circuit of the brainstem. In the adult, each principal neuron of the medial nucleus of the trapezoid body (MNTB) is contacted by a single calyx terminal. In rodents, the calyx of Held synapse forms around the third postnatal day (P3). Here, we studied the developmental changes in the intrinsic excitability of the principal neurons during the first postnatal week by making whole-cell recordings from brainstem slices. In slices from P0-1 rats, about 20% of the principal neurons were spontaneously active, whereas after P3, no spontaneously active cells were observed. Already at P0, principal neurons received both glutamatergic and GABAergic/glycinergic inputs. The occurrence of spontaneous action potentials depended upon the presence of spontaneous glutamatergic inputs; summation of only a few quanta was enough to reach action potential threshold. The main cause for this high excitability was a high resting membrane resistance, which decreased at least four-fold during the first postnatal week. A relatively slow decay of synaptic currents and a relatively depolarized membrane potential may have contributed as well. We conclude that the decrease in the excitability of principal neurons in the MNTB matches the increase of the strength of the synaptic inputs resulting from the formation and maturation of the calyx of Held synapse during the first postnatal week. This decrease in excitability will make it progressively more difficult for non-calyceal inputs to trigger action potentials.  相似文献   

15.
It has been shown previously that 3,4-diaminopyridine (3,4-DAP) facilitates synaptic transmission in the frog sympathetic ganglion inducing so-called stimulus-bound repetition (SBR), i.e. a brief burst of repetitive postganglionic discharges after a single orthodromic stimulus. In the present study we analyzed one of the possible mechanisms of the 3,4-DAP-induced SBR, namely changes in postsynaptic membrane excitability. We found that 3,4-DAP in concentration optimal for inducing SBR (2 X 10(-4) mol.l-1) had no direct effect on the excitability of the postsynaptic membrane of frog sympathetic neurones. The excitability was expressed as the threshold for action potentials elicited orthodromically, antidromically and directly, as well as the spike activity evoked by constant depolarizing current pulses. We also indirectly excluded the involvement of two other possible mechanisms of neuronal membrane excitability modulation in the 3,4-DAP-induced SBR, i.e. the M-current suppression by analyzing the participation of muscarinic receptor activation in the SBR, and inhibition of the Ca(2+)-activated K+ currents by measuring the duration of afterhyperpolarization of antidromic action potential. Our findings indicate that no remarkable changes in the properties of the postsynaptic membrane contribute to the generation of 3,4-DAP-induced SBR in the frog sympathetic ganglion. This strongly supports the hypothesis that the mechanism underlying SBR evoked by this drug is presynaptic.  相似文献   

16.
蝎毒耐热蛋白对大鼠急性分离海马神经元兴奋性的影响   总被引:4,自引:0,他引:4  
Wang Y  Zhang XY  Li S  Zhang J  Zhao J  Zhang WQ 《生理学报》2007,59(1):87-93
应用全细胞膜片钳记录技术在电流钳模式下观察经持续高温等特殊处理后分离纯化的30~50 kDa蝎毒耐热蛋白(scorpion venom heat resistant protein,SVHRP)(国家发明专利,专利号ZL01 106166.92)对急性分离大鼠海马神经元兴奋性的影响.结果发现SVHRP可致海马神经元兴奋性降低.神经元经1×10-2 μg/mL SVHRP处理后动作电位发放模式改变,发放频率减少.在52个受检细胞中,有45个细胞产生位相放电(占86.54%);7个细胞产生重复放电(占13.46%).在产生位相放电的45个细胞中,有8个细胞在SVHRP处理后仍可以诱发出位相放电(占17.78%);37个细胞在SVHRP处理后无法诱导出位相放电(占82.22%),SVHRP处理后动作电位的产生与处理前相比,有显著差异(P<0.01,n=45);在产生重复放电的7个细胞中,在1×10-2μg/mL SVHRP作用后均不能再次诱发出重复放电,而是产生一个动作电位或不再产生动作电位,药物处理前产生的动作电位个数为14.57±1.00,SVHRP处理后产生动作电位的个数为0.57±0.20,二者之间有显著性差异(P<0.01,n=7).1×10-4 μg/mLSVHRP处理后,诱发动作电位产生的基强度由(75.10±8.99)pA增加到(119.85±12.73)pA(P<0.01,n=8);阈电位由(-41.17±2.15)mV升至(-32.40±1.48)mV(P<0.01,n=8);动作电位峰值由(68.49±2.33)mV下降至(54.71±0.81)mV(P<0.01,n=8).由于神经元超兴奋性被认为是癫痫发作的基本机制之一,因此上述结果表明SVHRP有可能通过降低海马神经元兴奋性发挥其抗癫痫作用,这为蝎毒药物的进一步开发提供理论依据.  相似文献   

17.
Neuronal plasticity and its development were investigated at pyramidal neurons in the cortical slices of rats. The threshold and probability of firing spikes were measured by using whole‐cell recording to assess neuronal excitability. Postsynaptic high frequency activity (HFA) at the pyramidal neurons, evoked by 20 trains (250‐ms interval) of five depolarization‐pulses (1 ms) at 100 Hz, persistently lowered the threshold and increased the probability of firing spikes. After long‐term enhancement of neuronal excitability by HFA was stable, another HFA induced further enhancement. Infusing 1 mM 1,2‐bis(2‐aminophenoxy)‐ethane‐N, N,N′,N′‐tetraacetic acid or 100 μM CaMKII(281–301) into the recording neurons prevented HFA‐induced long‐term enhancement of neuronal excitability. The infusion of 40 μM calcineurin autoinhibitory peptide enhanced neuronal excitability, which occluded HFA effect. HFA‐induced long‐term enhancement of intrinsic excitability expressed at most pyramidal neurons after postnatal day (PND) 14, but not at those before PND 9. Our results show a new type of neuronal plasticity induced by physiological activity at cortical neurons, which requires calcium‐dependent protein phosphorylation and develops during postnatal period. An upregulation of intrinsic excitability at cortical neurons facilitates their activity and broadens signal codes; consequently, their computational ability is upgraded. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

18.
The enzyme aspartate aminotransferase was demonstrated cytochemically in the rat hippocampus 4, 7, and 14 days after unilateral entorhinal cortex lesion. At the light microscopic level the enzyme showed a significant activity decrease in the ipsilateral entorhinal terminal field which was similar at all postlesion times investigated. Non-denervated areas, i.e. the inner one-third of the dentate gyrus molecular layer and the radiatum layer of CA2/3, showed an increase of aminotransferase activities. At the electron microscopic level in the entorhinal terminal field of the control (unoperated) side aspartate aminotransferase was localized preferentially in a great number of boutons, containing the cytoplasmic and mitochondrial isoenzymes. Following entorhinal lesion a significant loss of these positively reacting boutons was seen. Most of the degenerating boutons contained reaction product but a small number was negative for aspartate aminotransferase. From 4 to 14 postlesion days the positively reacting boutons of the non-denervated supragranular zone expanded outward into the denervated area according to the known terminal proliferation of the commissural and associational systems. The remaining denervated entorhinal terminal field was reinnervated predominantly by negatively reacting boutons (probably terminal proliferations of septal afferents) and by a small number of positively reacting boutons (probably terminal proliferations of the crossed temporo-dentate pathway). The presence of cytoplasmic aspartate aminotransferase in the terminals of a well-known glutamatergic system is discussed in relation to the possible importance of this enzyme for the production of releasable glutamate.  相似文献   

19.
The effects of short-chain fatty acids on the membrane excitability, current-voltage (I-V) characteristics, and cell volume of Helix pomatia neurons were studied. 2-Decenoic acid (DA), having 10 carbon atoms in the hydrocarbon chain, suppressed the excitability of bursting neurons RPa1 (Sakharov and Salanki, 1969) for 30-60 min, while valeric acid (VA), having 5 carbon atoms, had no significant effect on excitability. DA had three different effects on the excitability of beating neurons: in some neurons DA suppressed excitability as in bursting neurons; in a second type of neuron DA had a negligible effect on excitability; and in the neuron located near RPa1 DA had a pentylentetrazol (PTZ)-like effect, i.e., it converted the discharge of the neuron from beating to bursting. DA decreased the peak value of the current, inducing a negative-resistance region in the I-V curve of the bursting neuron without any change in the level of the voltage at which the current reaches its maximal value. DA inhibited the hyperpolarization induced by activation of the Na+ pump, tested after preliminary enrichment of neurons with Na+ ions by incubation in a potassium-free solution for 20 min. DA caused a swelling of the neuron by about 10% which was independent of the Na+ pump. In all the above-mentioned cases VA had no significant effect.  相似文献   

20.
Inter-neuronal interactions within the medial septum/diagonal band complex (MSDB) are of great interest as this region is believed to be the hippocampal theta rhythm pacemaker. However, the role of glutamatergic system in functioning of the septal cells is yet unclear. Here, we demonstrate for the first time the effects of glutamate in physiological concentration (1 microM) on the MSDB neuronal spontaneous and evoked activities in vitro. These effects (activation of 70% and inhibition of 30% of responsive neurons) differed in pacemaker and non-pacemaker cells. Pacemaker cells were always activated under glutamate, whereas non-pacemaker neurons could be either activated or inhibited. Indeed, in the burst pacemakers, glutamate increased the frequency of rhythmic activity. In a total MSDB neuron population, in 30% of neurons glutamate applications modified responses to the electrical stimulation by unifying the temporal parameters of neuron responses. Along with the increase in the theta-burst frequency, this indicates that the glutamatergic system is involved in the process ofintraseptal synchronization. Obtained data shed light on the role ofglutamatergic system in septal neuron interactions and broaden our understanding of theta oscillation mechanisms in the septo-hippocampal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号