首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 632 毫秒
1.
Grasshopper abundance and diversity vary with management practices such as fire and grazing. Understanding how grasshopper life history traits such as fecundity respond to management practices is key to predicting grasshopper population dynamics in heterogeneous environments. Landscape-level experimental fire and bison grazing treatments at the Konza Prairie Biological Station (Manhattan, KS) provide an opportunity to examine how management affects grasshopper fecundity. Here we report on grasshopper fecundity for nine common species at Konza Prairie. From 2007 to 2009, adult female grasshoppers were collected every 3 wk from eight watersheds that varied in fire and grazing treatments. Fecundity was measured by examining female reproductive tracts, which contain a record of past and current reproductive activity. Body size was a poor predictor of fecundity for all species. Despite large differences in vegetation structure and composition with management regime (grazing and fire interval), we observed little effect of management on grasshopper fecundity. Habitat characteristics (grasshopper density, vegetation biomass, and vegetation quality; measured in 2008 and 2009) were better predictors of past fecundity than current fecundity, with species-specific responses. Fecundity increased throughout the summer, indicating that grasshoppers were able to acquire sufficient nutritional resources for egg production in the early fall when vegetation quality is generally low. Because fecundity did not vary across management treatments, population stage structure may be more important for determining population level reproduction than management regime at Konza Prairie.  相似文献   

2.
  1. We contrast the response of arthropod abundance and composition to bison grazing lawns during a drought and non‐drought year, with an emphasis on acridid grasshoppers, an important grassland herbivore.
  2. Grazing lawns are grassland areas where regular grazing by mammalian herbivores creates patches of short‐statured, high nutrient vegetation. Grazing lawns are predictable microsites that modify microclimate, plant structure, community composition, and nutrient availability, with likely repercussions for arthropod communities.
  3. One year of our study occurred during an extreme drought. Drought mimics some of the effects of mammalian grazers: decreasing above‐ground plant biomass while increasing plant foliar percentage nitrogen.
  4. We sampled arthropods and nutrient availability on and nearby (“off”) 10 bison‐grazed grazing lawns in a tallgrass prairie in NE Kansas. Total grasshopper abundance was higher on grazing lawns and the magnitude of this difference increased in the wetter year of 2019 compared to 2018, when drought led to high grass foliar nitrogen concentrations on and off grazing lawns. Mixed‐feeding grasshopper abundances were consistently higher on grazing lawns while grass‐feeder and forb‐feeder abundances were higher on lawns only in 2019, the wetter year. In contrast, the abundance of other arthropods (e.g., Hemiptera, Hymenoptera, and Araneae) did not differ on and off lawns, but increased overall in 2019, relative to the drought of 2018.
  5. Understanding these local scale patterns of abundances and community composition improves predictability of arthropod responses to ongoing habitat change.
  相似文献   

3.
The outcomes of grasshopper responses to both vertebrate grazing and fire vary across grassland ecosystems, and are strongly influenced by local climactic factors. Thus, the possible application of grazing and fire as components of an ecologically based grasshopper management strategy must be investigated in regional studies. In this study, we examined the effects of grazing and fire on grasshopper population density and community composition in a northern Great Plains mixed-grass prairie. We employed a large-scale, replicated, and fully-factorial manipulative experimental design across 4 yr to examine the separate and interactive effects of three grazing systems in burned and unburned habitats. Grasshopper densities were low throughout the 4-yr study and 1 yr of pretreatment sampling. There was a significant fire by grazing interaction effect on cumulative density and community composition, resulting from burned season long grazing pastures having higher densities than unburned pastures. Shannon diversity and grasshopper species richness were significantly higher with twice-over rotational livestock grazing. The ability to draw strong conclusions regarding the nature of species composition shifts and population changes in the presence of fire and grazing is complicated by the large site differences and low grasshopper densities. The results reinforce the importance of long-term research to examine the effects of habitat manipulation on grasshopper population dynamics.  相似文献   

4.
Twelve grassland sites were sampled inside and outside the Mountain Zebra National Park (MZNP), South Africa to assess changes in grasshopper assemblages to grazing by indigenous mammals inside the park compared to grazing by domestic cattle outside. The MZNP has been restored from cattle-grazed farmland to indigenous mammal parkland for 62 years. The number of grasshopper species and families inside the park was not significantly different from outside the park, but the number of individuals inside the park was significantly higher. Multivariate statistics did not reveal any strong site groupings based on simple inside/outside comparisons, but there were clear groupings of sites based on vegetation characteristics and other environmental variables. The park boundary, therefore, does not significantly determine grasshopper assemblages, although intensity of grazing does. The indigenous mammals inside the park had the same effect on grasshoppers as the domestic cattle outside, and it was the level of defoliation and trampling that was important rather than the type of mammal. Intensive livestock grazing and trampling leads to bush encroachment and reduction in grass cover and/or disappearance of several grass species. In response to this pressure, grasshopper populations dropped, with localized extirpation of some species. Vegetation composition and structure, particularly grass height and percentage cover, had a significant effect on grasshopper assemblages. The MZNP is thus an area of localized, elevated grasshopper abundance in comparison with the surrounding farms, and presumably represents a situation prior to the current, intensive farming activities. Such elevated grasshopper abundances are important for maintaining soil quality and hence ecological integrity of this landscape which is poor in organics and nitrogen. The MZNP could be viewed as a centre where species with high mobility may seek refuge from anthropogenic pressures. The MZNP also serves as a reference illustrating the differences between restored-through-natural-succession and anthropogenically disturbed habitats, and compares desirable with undesirable ecosystem changes for herbivorous invertebrates such as grasshoppers.  相似文献   

5.
Grasshoppers host a number of parasitoids, but little is known about their impact on grasshopper life history attributes or how those impacts may vary with land use. Here, we report on a three-year survey of nine grasshopper species in a tallgrass prairie managed with fire and bison grazing treatments. We measured parasitoid prevalence and the impact of parasitoid infection on grasshopper fecundity to determine if grasshopper-parasitoid interactions varied with management treatment. Adult female grasshoppers were collected every three weeks from eight watersheds managed with different prescribed burning and grazing treatments. Grasshopper fecundity with and without parasitoids was estimated through dissections of reproductive tracts. Dipteran parasitoids from two families (Nemestrinidae and Tachinidae) were observed infecting grasshoppers. We found significant effects of grazing treatment, but not burn interval, on grasshopper-parasitoid interactions. Parasitoids were three times more abundant in watersheds with bison grazing than in ungrazed watersheds, and the relative abundance of nemestrinid and tachinid flies varied with grazing treatment. Parasitoid prevalence varied among grasshopper species from <0.01% infected (Mermiria bivittata) to 17% infected (Hypochlora alba). Parasitoid infection reduced individual grasshopper fecundity, with stronger effects on current reproduction than on past reproduction. Furthermore, current fecundity in parasitized grasshoppers was lower in grazed watersheds compared to ungrazed watersheds. Nemestrinid parasitoids generally had stronger impacts on grasshopper fecundity than tachinid parasitoids, the effects of which were more variable.  相似文献   

6.
Abstract Vegetation and grasshopper community variables were monitored on the natural steppes grazed by livestock in Inner Mongolia, China. The sites sampled belong to 3 vegetation types laid separately in 3 continuums from different grazing intensities. Each continuum consisted of 5 plots along grazing gradients. Within the plots, the species composition, population number and population calorific value of grasshoppers that was converted from their biomass varied sensitively with increase of grazing intensities. The methods of neartude and choosing rules of fuzzy mathematics were used to analyze successive populations of grasshoppers. By combining the gray relation with hierarchic cluster analysis, eleven grasshopper species were divided into 3 grazing guilds based on their responses to grazing. The results from detrended correspondence and the multivariate regression analysis proved that there were close successive relationships among the grasshopper species that varied with the changes of plant species, biomass, height and coverage. The importance of some grasshopper indicators to grassland change is discussed.  相似文献   

7.
不同放牧强度下的内蒙古草原蝗虫群落动态   总被引:5,自引:0,他引:5  
本文研究了内蒙古草原蝗虫群落在不同放牧强度下的动态变化。植物和蝗虫的取样涉及3种植物群落类型。每一种群落类型又根据放牧强度的不同,划分为5个放牧梯度。随着放牧强度的增加,蝗虫群落的组成和结构均发生了明显的变化。使用贴近度分析及择近原则的方法,阐明了蝗虫种的优势度变化及替代种的替代次序。通过灰色关联及系统聚类分析方法的结合,分析了11个蝗虫种对不同放牧强度的反应。对应性分析和多元逐步回归分析说明,蝗虫群落的变化是与某些植被因子和土壤因子密切相关,特别是植物种类数、生物量、高度以及土壤硬度和含水量等。某些蝗虫种的生态指示意义也在文中进行了讨论。  相似文献   

8.
中国北方草地蝗虫学研究概况   总被引:13,自引:0,他引:13  
李鸿昌  邱星辉 《昆虫知识》1992,29(3):149-152
<正> 就目前所知,我国严重为害草地的害虫约计40余种(田畴等,1988),其中主要为蝗虫类。其为害遍布我国北方草地。仅在内蒙古,每年发生面积约500~1000万亩,在为害严重的局部地区其虫口密度达200头/m~2。蝗虫的大发  相似文献   

9.
1. Grasshoppers are dominant herbivores in grassland ecosystems, and many studies have examined how grazing by large herbivores and precipitation patterns individually influence the dynamics of grassland grasshopper assemblages, but their combined effects are largely unknown. 2. In this study, grazing intensities (ungrazed, moderate, and heavy) were manipulated and precipitation (ambient and increased amount of rainfall) altered in a field experiment to test the effects of grazing and altered precipitation on a grasshopper community in a meadow steppe in northeastern China. 3. It was found that grasshopper species richness did not change according to different grazing intensities under ambient precipitation, but was significantly higher (by 38.1%) in moderate grazing intensities under increased precipitation. Grasshopper abundance increased considerably with increasing grazing intensities in ambient precipitation treatments; however, grasshopper abundance in heavy grazing intensities was significantly lower (by 32.9%) than in the other two grazing intensities under increased precipitation. Moreover, the responses of grasshopper abundance to grazing under altered precipitation were species‐specific. 4. Grazing effects on grasshopper species diversity were mediated through the species richness and biomass of grasses (food resources), but the effects on grasshopper abundance were mediated through plant height (vegetation structure) under altered precipitation. 5. These results suggest that appropriate grazing by large herbivores would be considered as beneficial management practices for maintaining grasshopper diversity and abundance under conditions of increased precipitation in grassland ecosystems. Additionally, greater attention should be paid to the population dynamics of different grasshopper species to better understand the responses of grasslands to grazing and altered precipitation.  相似文献   

10.
1. Adaptive phenotypic plasticity has been a major subject in evolutionary ecology, but how a species' behaviour may respond to certain environmental change is still not clear. In grasslands worldwide, large herbivores are increasingly used as a tool for grazing management, and occur to interact with grasshoppers that dominate grassland insect communities. Previous studies have been well-documented about grazing effects on diversity and abundance of grasshoppers. Yet, how grazing may alter grasshopper behaviour, and potential effects on their abundance remains elusive. 2. We conducted a field experiment by manipulating grazing using sheep, cattle, and their mix to examine the behavioural responses and abundance of the grasshoppers (Euchorthippus unicolor) to grazing in a Leymus chinensis-dominated grassland. 3. Results showed that the grasshoppers spent less time on feeding and resting on grasses, but more time on switching and resting on forbs under cattle grazing and mixed grazing with cattle and sheep. In contrast, the grasshoppers spent more time on feeding but less time on switching and resting on forbs under sheep grazing. The behavioural changes were also potentially linked to grasshopper abundance in the context of grazing management. 4. The responses of grasshopper behaviour and abundance to grazing may be largely triggered by altered vegetation and microclimates. Such behavioural flexibility of grasshoppers must be considered when large herbivores are recognised as a management tool for influencing grasshopper abundance, and grazer species should be paid more attention both individually and jointly for better grassland conservation.  相似文献   

11.
The microclimate of an improved hay meadow was studied using Tinytag dataloggers to record sward temperature after cutting. Temperatures in the sward were then compared to grasshopper abundances to see if mowing created an excessively hot microclimate unfavourable for sustained grasshopper activity in mid summer. The abundance of Chorthippus albomarginatus and Chorthippus parallelus was significantly reduced on the hay plots compared to the unmanaged control swards, which may have been due to high sward temperatures created by the absence of tall, shady vegetation in which grasshoppers may take refuge to avoid overheating. This study suggests that a combination of mortality caused by the physical process of mowing, and high sward temperatures created by removal of the standing crop by cutting may cause the low abundance of grasshoppers in improved grassland in eastern England. This research is particularly important when considering the orthopteran assemblages of Environmental Stewardship Scheme field margins where mowing for hay in July and August may seriously reduce grasshopper populations. If mowing of grassland has to occur during the grasshopper season, we suggest a later cut in September or a system of rotational mowing, leaving areas of uncut grassland as shelter.  相似文献   

12.
1. Competition between herbivores often plays an important role in population ecology and appears strongest when densities are high or plant production is low. Phytophagous insects are often highly abundant, but relatively few experiments have examined competition between vertebrates and phytophagous insects. 2. In grassland systems worldwide, grasshoppers are often the dominant phytophagous insect, and livestock grazing is a dominant land use. For this study, a novel experiment was conducted examining competition between vertebrates and invertebrates, where both grasshopper densities and sheep grazing were manipulated inside 10‐m2 caged mesocosms during a grasshopper outbreak. We examined how grasshopper densities and the timing of vertebrate herbivory affected grasshopper densities, if the effects of vertebrates on survival and reproduction changed with grasshopper density, and how a naturally occurring grasshopper outbreak affected grasshopper populations in the following year. 3. Densities of grasshoppers at the site peaked at 130 m–2. Food‐limited competition was stronger in treatments with higher grasshopper densities and repeated or late livestock herbivory, leading to reduced survival, femur length, and functional ovarioles, a measure of future reproduction. Strong food‐limited density‐dependent reproduction and survival led to reduced hatching densities in 2001. 4. As competition was typically stronger with high grasshopper densities than with livestock grazing, competition from vertebrates could be relatively less important for phytophagous insect population dynamics during outbreaks. The experiment provides insights into how competition between insect and vertebrate herbivores influences insect population dynamics, and indicates that severe outbreaks can rapidly subside with strong competition from vertebrate and insect herbivores.  相似文献   

13.
1. The Qilian Mountains represent one of the key livestock‐raising grasslands in China. The two main herbivore species raised in this area – yaks and sheep – are of critical economical value. Grasshoppers compete with these animals for available nutrients, creating multifaceted relationships between livestock, grasshoppers and plants. A clear understanding of such relationships is lacking and is urgently needed to guide conservation efforts. 2. This study aims to document the effects of yak and sheep grazing on grasshopper assemblages and to elucidate the underlying mechanisms of such effects. 3. It is shown here that yaks and sheep impact grasshopper assemblages differently. Grasshopper assemblages exhibited lower density, biodiversity, richness, and evenness of distribution in yak‐grazed pastures than in grazing‐free grasslands. Sheep‐grazed pastures exhibited a dramatically divergent picture, with elevated density, biodiversity and richness, and a slightly decreased evenness of distribution. Grasshoppers were generally larger in grazed pastures than in grazing‐free grasslands, especially in yak‐grazed plots. 4. The present study suggests that differences between yak and sheep pastures in plant assemblage structure and plant traits are probably the underlying forces driving the differences in grasshopper assemblage structure and grasshopper traits, respectively. 5. The study shows that the grasshopper habitat indicator species differ between yak and sheep pastures, raising the possibility that such indicators can be used to monitor grassland usage and degradation in the Qilian Mountains. 6. These results provide novel insights into the dynamic interactions of common domesticated herbivore species, grasshoppers and plants in Qilian Mountains, which augment current knowledge and may ultimately lead to better conservation practices.  相似文献   

14.
传统上估算蝗虫在放牧草场为害损失的方法几乎都是用来测定对牧草秋季产量的影响,而实际上,在估算放牧草场蝗虫为害损失及经济阈值时,牧草的现存量而非秋季产量是更应考虑的因素.本文提出了一种适合测定蝗虫对牧草现存生物量影响的新方法,即野外挂笼饲养与蝗虫种群动态相结合的估算方法,并在此基础上组建了放牧草场蝗虫种群经济阈值模型;α_0 α_1M_1_α_2M_2_ α_3S_1 α_4S_2=C其中,M_1:狭翅雏蝗生物量;M_2:宽须蚁蝗生物量;S_1:狭翅雏蝗平均个体重量,S_2:宽须蚁蝗平均个体重量;α_0-α_4:常数.同时引入蝗虫种群数量和生物量两项参数来表达蝗虫种群的发生程度.  相似文献   

15.
放牧干扰下的蝗虫-植物相互作用关系   总被引:8,自引:1,他引:8  
本文研究了内蒙古典型草原植物和蝗虫群落在不同放牧强度影响下的多样性、均匀性和丰盛度变化。比较了蝗虫群落与植物群落在放牧梯度上的相互作用关系。研究发现,放牧干扰活动会明显地影响植物和蝗虫群落结构,但蝗虫群落结构的变化趋势并非与植物完全同步。蝗虫与植物间的联系更多地表现在植物起着蝗虫栖息地条件的作用,而并不完全是食料植物的作用。文中对放牧实践与多样性保护的关系进行了讨论。  相似文献   

16.
The coexistence of similar species accounts for some 30% of diversity within communities, yet the coexistence and relative abundance of similar species is a continuing ecological conundrum. Using close phylogenetic relatedness as a measure of similarity, we previously demonstrated that neither classic niche theory nor neutral theory can explain the relative abundances of co-occurring pairs of similar tree species in a diverse tropical forest. Here, we show that the stable, focused competition of a temporal niche dynamic fits the distribution of observed fractional abundances (pairwise relative abundances). Previously published, independent evidence of temporal dynamics in this community supports our results; our model identifies additional criteria for field tests of differential sensitivity (DS) temporal dynamics. The success of temporal dynamics at explaining the observed distribution—and the failure of alternative hypotheses to do so—indicates that current diagnostics of community structure and assembly needs general re-examination. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The human impact on the African savanna is parcelling large native mammals into game reserves, with cattle and other livestock replacing these native mammals in the matrix surrounding these reserves. Concordant with this are other landscape changes such as fire maintenance within the reserve but no longer outside. How does this composite landscape change affect biodiversity, as represented by small animals such as grasshoppers? This question was addressed against the premise that grasshoppers have evolved in the context of native mammal ecology. One of the most significant aspects of this ecology is grazing and trampling by the large number of ungulates congregating at waterholes. The results clearly show that the grasshopper fauna is only marginally impoverished outside the reserve, and that cattle trampling and grazing (along with less fire) is a simulation of these impacts by native ungulates. As greatest grasshopper diversity is encouraged by some trampling and grazing, the presence of cattle in place of native mammals is not entirely adverse to biodiversity, as represented by grasshoppers.  相似文献   

18.
Livestock grazing can have a strong impact on herbivore abundance, distribution and community. However, not all species of herbivores respond the same way to livestock grazing, and we still have a poor understanding of the underlying mechanisms driving these differential responses. Here, we investigate the effect of light intensity cattle grazing on the abundance of two grasshoppers (Euchorthippus cheui and E. unicolor) that co-occur in the same grasslands and feed on the same food plant (the dominant grass Leymus chinensis). The two grasshopper species differ in phenology so that their peak abundances are separated into early- and late-growing seasons. We used an exclosure experiment to monitor grasshopper abundance and food quality in the field under grazed and ungrazed conditions, and performed feeding trials to examine grasshopper preference for grazed or ungrazed food plants in the laboratory. We found that the nitrogen content of L. chinensis leaves continuously declined in the ungrazed areas, but was significantly enhanced by cattle grazing over the growing season. Cattle grazing facilitated the early-season grasshopper E. cheui, whereas it suppressed the late-season grasshopper E. unicolor. Moreover, feeding trials showed that E. cheui preferred L. chinensis from grazed plots, while E. unicolor preferred the leaves from ungrazed plots. We conclude that livestock grazing has opposite effects on the two grasshopper species, and that these effects may be driven by grazing-induced changes in plant nutrient content and the unique nutritional niches of the grasshoppers. These results suggest that insects that belong to the same guild can have opposite nutrient requirements, related to their distinct phenologies, and that this can ultimately affect their response to cattle grazing. Our results show that phenology may link insect physiological needs to local resource availabilities, and should be given more attention in future work on interactions between large herbivores and insects.  相似文献   

19.
Determining how ecological communities will respond to global environmental change remains a challenging research problem. Recent meta‐analyses concluded that most communities are undergoing compositional change despite no net change in local species richness. We explored how species richness and composition of co‐occurring plant, grasshopper, breeding bird and small mammal communities in arid and mesic grasslands changed in response to increasing aridity and fire frequency. In the arid system, grassland and shrubland plant and breeding bird communities were undergoing directional change, whereas grasshopper and small mammal communities were stable. In the mesic system, all communities were undergoing directional change regardless of fire frequency. Despite directional change in composition in some communities, species richness of all communities did not change because compositional change resulted more from reordering of species abundances than turnover in species composition. Thus, species reordering, not changes in richness, explains long‐term dynamics in these grass and shrub dominated communities.  相似文献   

20.
The American Bison (Bison bison Linnaeus) in the Henry Mountains are one of the last free-roaming, genetically pure herds of bison remaining in North America. Anecdotal evidence indicates that this herd is utilising a cattle winter range during the summer and fall, creating a conflict between the state agency that manages the bison, and the Bureau of Land Management (BLM) and local ranchers. In theory, the addition of bison grazing pressure could reduce forage availability in the short term and lead to undesired changes in the plant community in the long term. Our objective was to determine whether bison have altered the plant species composition of the cattle winter range. We characterised plant species composition, percent cover, and grazing intensity on three adjacent, geomorphologically similar mesas. Grazing regimes were different on the three mesas, one with bison and cattle present, one with cattle only present, and the third with neither cattle nor bison present. Vegetation surveys were accompanied by a 28-year remote sensing time series to test for temporal shifts in an index of primary productivity. We found a higher grazing intensity on two dominant forage species on the bison plus cattle grazed mesa in fall, before the cattle were turned out to winter pasture. Despite this difference in grazing intensity, we found few differences in species composition, percent cover, or NDVI across the three grazing regimes. Our results suggest that high intensity summer bison grazing, while likely creating short-term reductions in forage availability, has not caused differences in plant community composition or productive potential. Shifts in community composition can take years to unfold and just as long to correct; therefore, continued monitoring of the combined effects of cattle and bison is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号