共查询到20条相似文献,搜索用时 0 毫秒
1.
《BBA》1987,891(3):275-285
The formation of excited states and energy transfer in chlorosomes of the green photosynthetic bacteria Chlorobium limicola and Chloroflexus aurantiacus were studied by measurements of flash-induced absorbance changes and fluorescence. Upon excitation with 35 ps, 532 nm flashes, large absorbance decreases around 750 nm were observed that were due to the disappearance of ground state absorption of the main pigment, bacteriochlorophyll (BChl) c. The absorbance changes decayed after the flash with a time constant of approx. 1 ns, together with faster components. Absorbance changes that could be ascribed to formation of excited BChl a were much smaller than those of BChl c. The yields of BChl c and BChl a fluorescence were measured as a function of the energy density of the exciting flash. At high energy a strong quenching occurred caused by annihilation of singlet excited states. An analysis of the results shows that energy transfer between BChl c molecules is very efficient and that in C. limicola excitations can probably move freely through the entire chlorosome (which contains about 10 000 BChls c). The chlorosome thus serves as a common antenna for several reaction centres. The small amounts of BChl a present in the chlorosomes of both species form clusters of only a few molecules. Upon cooling to 4 K the sizes of the domains of BChl c for energy transfer decreased considerably. The results are discussed in relation to recently suggested models for the pigment organization within chlorosomes. 相似文献
2.
We have studied the pigment arrangement in purified cytoplasmic membranes of the thermophilic green bacterium Chloroflexus aurantiacus. The membranes contain 30–35 antenna bacteriochlorophyll a molecules per reaction center; these are organized in the B808–866 light-harvesting complex, together with carotenoids in a 2:1 molar ratio. Measurements of linear dichroism in a pressed polyacrylamide gel permitted the accurate determination of the orientation of the optical transition dipole moments with respect to the membrane plane. Combination of linear dichroism and low temperature fluorescence polarization data shows that the Qy transitions of the BChl 866 molecules all lie almost perfectly parallel to the membrane plane, but have no preferred orientation within the plane. The BChl 808 Qy transitions make an average angle of about 44° with this plane. This demonstrates that there are clear structural differences between the B808–866 complex of C. aurantiacus and the B800–850 complex of purple bacteria. Excitation energy transfer from carotenoid to BChl a proceeds with about 40% efficiency, while the efficiency of energy transfer from BChl 808 to BChl 866 approaches 100%. From the minimal energy transfer rate between the two spectral forms of BChl a, obtained by analysis of low temperature fluorescence emission spectra, a maximal distance between BChl 808 and BChl 866 of 23 was derived.Abbreviations BChl
bacteriochlorophyll
- BPheo
bacteriopheophytin
- CD
circular dichroism
- LD
linear dichroism
- Tris
Tris(hydroxymethyl)aminomethane 相似文献
3.
The transfer of excitation energy and the pigment arrangement in isolated chlorosomes of the thermophilic green bacterium Chloroflexus aurantiacus were studied by means of absorption, fluorescence and linear dichroism spectroscopy, both at room temperature and at 4 K. The low temperature absorption spectrum shows bands of the main antenna pigments BChl c and carotenoid, in addition to which bands of BChl a are present at 798 and 613 nm. Fluorescence measurements showed that excitation energy from BChl c and carotenoid is transferred to BChl a, which presumably functions as an intermediate in energy transfer from the chlorosome to the cytoplasmic membrane. Measurements of fluorescence polarization and the use of two different orientation techniques for linear dichroism experiments enabled us to determine the orientation of several transition dipole moments with respect to each other and to the three principal axes of the chlorosome. The Qy transition of BChl a is oriented almost perfectly perpendicular to the long axis of the chlorosome. The Qy transition of BChl c and the -carotene transition dipole are almost parallel to each other. They make an angle of about 40° with the long axis and of about 70° with the short axis of the chlorosome; the angle between these transitions and the BChl a Qy transition is close to the magic angle (55°).Abbreviations BChl
bacteriochlorophyll
- CD
circular dichroism
- LD
linear dichroism
Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement. 相似文献
4.
Bacteriochlorophyll (BChl) c was extracted from Chloroflexus aurantiacus and purified by reverse-phase high-pressure liquid chromatography. This pigment consists of a complex mixture of homologues, the major component of which is 4-ethyl-5-methylbacteriochlorophyll c stearyl ester. Unlike previously characterized BChls c, the pigment from C. aurantiacus is a racemic mixture of diastereoisomers with different configurations at the 2a chiral center. Diluting a concentrated methylene chloride solution of BChl c with hexane produces an oligomer with absorption maxima at 740-742 and at 460-462 nm. Both the absorption spectrum and the fluorescence emission spectrum (maximum at 750 nm) of this oligomer closely match those of BChl c in chlorosomes. Further support for this model comes from the ability of alcohols, which disrupt BChl c oligomers by ligating the central Mg atom, to convert BChl c in chlorosomes to a monomeric form when added in low concentrations. The lifetime of fluorescence from the 740 nm absorbing BChl c oligomer is about 80 ps. Although exciton quenching might be unusually fast in the in vitro BChl c oligomer because of its large size and/or the presence of minor impurities, this result suggests that energy transfer from the BChl c antenna in chlorosomes must be very fast if it is to be efficient. 相似文献
5.
The transfer of excitation energy in intact cells of the thermophilic green photosynthetic bacterium Chloroflexus aurantiacus was studied both at low temperature and under more physiological conditions. Analysis of excitation spectra measured at 4K indicates that the minor fraction of bacteriochlorophyll a present in the chlorosome functions as an intermediate in energy transfer between the main light-harvesting pigment BChl c and the membrane-bound B808-866 antenna complex. This supports the hypothesis that BChl a is associated with the base plate which connects the chlorosome with the membrane. The overall efficiency for energy transfer from the chlorosome to the membrane is only 15% at 4K. High efficiencies of close to 100% are observed above 40°C near the temperature where the cultures are grown. Cooling to 20°C resulted in a sudden drop of the transfer efficiency which appeared to originate in the chlorosome. This decrease may be related to a lipid phase transition. Further cooling mainly affected the efficiency of transfer between the chlorosome and the membrane. This effect can only partially be explained by a decreased Förster overlap between the chlorosomal BChl a and BChl a 808 associated with the membrane-bound antenna system. The temperature dependence of the fluorescence yield of BChl a 866 also appeared to be affected by lipid phase transitions, suggesting that this fluorescence can be used as a native probe of the physical state of the membrane. 相似文献
6.
Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus. 总被引:1,自引:4,他引:1 下载免费PDF全文
S G Sprague L A Staehelin M J DiBartolomeis R C Fuller 《Journal of bacteriology》1981,147(3):1021-1031
Freeze-fracture electron microscopy was used to study further the changes in chlorosome structure during the development of the photosynthetic apparatus in Chloroflexus aurantiacus J-10-fl. During development, in response to decreased light intensity or lower oxygen tension, the number of chlorosomes per cell increased. The same conditions also led to a general thickening of chlorosomes but did not affect their length or width. The thickening of the chlorosomes paralleled increases in the bacteriochlorophyll c/bacteriochlorophyll a ratio. Semiaerobic induction of the photosynthetic apparatus did not produce a synchronous assembly of chlorosomes in all cells of a given culture. Even adjacent cells of a single filament showed great variations in the rate and extent of response. Parallel appearance of (i) approximately 5-nm particles (in a lattice configuration) in the membrane attachment site, (ii) the crystalline baseplate material (with a periodicity of approximately 6 nm) adjacent to the membrane attachment site, and (iii) the chlorosome envelope layer preceded addition of longitudinally oriented, rodlike elements (diameter, congruent to 6 m) to the chlorosome core. It is estimated that each chlorosome can funnel energy into approximately 100 reaction centers. Chlorosomes could be isolated by a simple density gradient procedure only from cells grown at low light intensity. A bacteriochlorophyll a species absorbing at 790 nm was associated with isolated chlorosomes. Lithium dodecyl sulfate-polyacrylamide gel electrophoresis of chlorosomes showed only a few low-molecular-weight polypeptides (less than 15,000). 相似文献
7.
Andrei G. Yakovlev Alexandra S. Taisova Vladimir A. Shuvalov Zoya G. Fetisova 《Physiologia plantarum》2019,166(1):12-21
Bacteriochlorophyll (BChl) c pigments in the aggregated state are responsible for efficient light harvesting in chlorosomes of the filamentous anoxygenic photosynthetic bacterium, Chloroflexus (Cfx.) aurantiacus. Absorption of light creates excited states in the BChl c aggregates. After subpicosecond intrachlorosomal energy transfer, redistribution and relaxation, the excitation is transferred to the BChl a complexes and further to reaction centers on the picosecond time scale. In this work, the femtosecond excited state dynamics within BChl c oligomers of isolated Cfx. aurantiacus chlorosomes was studied by double difference pump‐probe spectroscopy at room temperature. Difference (Alight ? Adark) spectra corresponding to excitation at 725 nm (blue side of the BChl c absorption band) were compared with those corresponding to excitation at 750 nm (red side of the BChl c absorption band). A very fast (time constant 70 ± 10 fs) rise kinetic component was found in the stimulated emission (SE) upon excitation at 725 nm. This component was absent at 750‐nm excitation. These data were explained by the dynamical red shift of the SE due to excited state relaxation. The nature and mechanisms of the ultrafast excited state dynamics in chlorosomal BChl c aggregates are discussed. 相似文献
8.
Isolation and characterization of cytoplasmic membranes and chlorosomes from the green bacterium Chloroflexus aurantiacus. 总被引:6,自引:2,他引:4 下载免费PDF全文
A method was developed which allows the isolation and purification of cytoplasmic membranes and chlorosomes from cells of Chloroflexus aurantiacus grown under different light conditions. The dipolar ionic detergent Deriphat (0.08%) and a sodium iodide gradient centrifugation were used in isolating cytoplasmic membranes. Chlorosomes were prepared with 0.16% of the dipolar ionic detergent Miranol and purified by a sucrose gradient centrifugation. Cytoplasmic membrane fractions prepared from either high- (3,000 W m-2), medium-(200 W m-2) or low- (7 W m-2) light-grown cells had near infrared absorption bands at 866, 808, and 755 nm in a constant characteristic absorbance ratio of 6:3.8:1. In all cytoplasmic membrane preparations, the amount of bacteriochlorophyll a (Bchl a) per cytochrome, the amount of Bchl a per reaction center, and reaction center per milligram of cytoplasmic membrane protein was found to be constant. No Bchl c was present. Five respiratory enzyme activities have been measured in the cytoplasmic membrane fraction. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of denatured cytoplasmic membrane showed many bands, but a major polypeptide with an apparent molecular weight of 8,000. In contrast, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified chlorosomes did not contain the 8,000-molecular-weight band but revealed only three distinct protein bands with molecular weights of 15,000, 12,000, and 6,000. Isolated chlorosomes contained Bchl c and a small, yet constant, amount of Bchl a (absorbing at 790 nm) in a molar ratio of 25:1. The data indicated that the components of the photosynthetic apparatus in the cytoplasmic membrane of Chloroflexus aurantiacus remained constant and only the amount of antenna Bchl c varied with light conditions. 相似文献
9.
We have used measurements of fluorescence and circular dichroism (CD) to compare chlorosome-membrane preparations derived from the green filamentous bacterium Chloroflexus aurantiacus grown in continuous culture at two different light-intensities. The cells grown under low light (6 mol m–2 s–1) had a higher ratio of bacteriochlorophyll (BChl) c to BChl a than cells grown at a tenfold higher light intensity; the high-light-grown cells had much more carotenoid per bacteriochlorophyll.The anisotropy of the QY band of BChl c was calculated from steady-state fluorescence excitation and emission spectra with polarized light. The results showed that the BChl c in the chlorosomes derived from cells grown under high light has a higher structural order than BChl c in chlorosomes from low-light-grown cells. In the central part of the BChl c fluorescence emission band, the average angles between the transition dipole moments for BChl c molecules and the symmetry axis of the chlorosome rod element were estimated as 25° and 17° in chlorosomes obtained from the low- and high-light-grown cells, respectively.This difference in BChl organization was confirmed by the decay associated spectra of the two samples obtained using picosecond single-photon-counting experiments and global analysis of the fluorescence decays. The shortest decay component obtained, which probably represents energy-transfer from the chlorosome bacteriochlorophylls to the BChl a in the baseplate, was 15 ps in the chlorosomes from high-light-grown cell but only 7 ps in the preparation from low-light grown cells. The CD spectra of the two preparations were very different: chlorosomes from low-light-grown cells had a type II spectrum, while those from high-light-grown cells was of type I (Griebenow et al. (1991) Biochim Biophys Acta 1058: 194–202). The different shapes of the CD spectra confirm the existence of a qualitatively different organization of the BChl c in the two types of chlorosome.Abbreviations BChl
bacteriochlorophyll
- CD
circular dichroism
- DAS
decay associated spectrum
- PMSF
phenylmethylsulfonyl fluoride 相似文献
10.
The protein assumed to be associated with bacteriochlorophyll (BChl) a in chlorosomes from the photosynthetic green filamentous bacterium Chloroflexus aurantiacus was investigated by alkaline treatment, proteolytic digestion and a new treatment using 1-hexanol, sodium cholate and Triton X-100. Upon alkaline treatment, only the 5.7 kDa CsmA protein was removed from the chlorosomes among six proteins detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, concomitantly with the disappearance of BChl a absorption at 795 nm. Trypsin treatment removed two proteins with molecular masses of 11 and 18 kDa (CsmN and CmsM), whereas the spectral properties of BChl a and BChl c were not changed. By the new hexanol-detergent (HD) treatment, most BChl c and all of the detected proteins except CsmA were removed from the chlorosomes without changing the BChl a spectral properties. Subsequent proteinase K treatment of these HD-treated chlorosomes caused digestion of CsmA and a simultaneous decrease of the BChl a absorption band. Based on these results, we suggest that CsmA is associated with BChl a in the chlorosomes. This suggestion was supported by the measured stoichiometric ratio of BChl a to CsmA in isolated chlorosomes, which was estimated to be between 1.2 and 2.7 by amino acid analysis of the SDS-PAGE-resolved protein bands. 相似文献
11.
The membrane-bound photooxidizable cytochrome c-554 from Chloroflexus aurantiacus has been purified. The purified protein runs as a single heme staining band on SDS-PAGE with an apparent molecular mass of 43 000 daltons. An extinction coefficient of 28 ± 1 mM–1 cm–1 per heme at 554 nm was found for the dithionite-reduced protein. The potentiometric titration of the hemes takes place over an extended range, showing clearly that the protein does not contain a single heme in a well-defined site. The titration can be fit to a Nernst curve with midpoint potentials at 0, +120, +220 and +300 mV vs the standard hydrogen electrode. Pyridine hemochrome analysis combined with a Lowry protein assay and the SDS-PAGE molecular weight indicates that there are a minimum of three, and probably four hemes per peptide. Amino acid analysis shows 5 histidine residues and 29% hydrophobic residues in the protein. This cytochrome appears to be functionally similar to the bound cytochrome from Rhodopseudomonas viridis. Both cytochrome c-554 from C. aurantiacus and the four-heme cytochrome c-558-553 from R. viridis appear to act as direct electron donors to the special bacteriochlorophyll pair of the photosynthetic reaction center. They have a similar content of hydrophobic amino acids, but differ in isoelectric point, thermodynamic characteristics, spectral properties, and in their ability to be photooxidized at low temperature.Abbreviations LDAO
lauryl dimethyl amine-N-oxide
- SDS-PAGE
sodium dodecyl sulfate polyacrylamide gel electrophoresis
- mV
millivolt
- Em.8
midpoint potential at pH 8.0
- ODV
optical density x volume in ml 相似文献
12.
Chlorosomes of photosynthetic green bacteria are unique molecular assemblies providing efficient light harvesting followed by multi-step transfer of excitation energy to reaction centers. In each chlorosome, 104–105 bacteriochlorophyll (BChl) c/d/e molecules are organized by self-assembly into high-ordered aggregates. We studied the early-time dynamics of the excitation energy flow and energy conversion in chlorosomes isolated from Chloroflexus (Cfx.) aurantiacus bacteria by pump-probe spectroscopy with 30-fs temporal resolution at room temperature. Both the S2 state of carotenoids (Cars) and the Soret states of BChl c were excited at ~490 nm, and absorption changes were probed at 400–900 nm. A global analysis of spectroscopy data revealed that the excitation energy transfer (EET) from Cars to BChl c aggregates occurred within ~100 fs, and the Soret → Q energy conversion in BChl c occurred faster within ~40 fs. This conclusion was confirmed by a detailed comparison of the early exciton dynamics in chlorosomes with different content of Cars. These processes are accompanied by excitonic and vibrational relaxation within 100–270 fs. The well-known EET from BChl c to the baseplate BChl a proceeded on a ps time-scale. We showed that the S1 state of Cars does not participate in EET. We discussed the possible presence (or absence) of an intermediate state that might mediates the Soret → Qy internal conversion in chlorosomal BChl c. We discussed a possible relationship between the observed exciton dynamics and the structural heterogeneity of chlorosomes. 相似文献
13.
《FEBS letters》1985,181(1):173-178
The BChlc polypeptide was isolated from chlorosomes of the green bacterium Chloroflexus aurantiacus on Sephadex LH-60. The complete amino acid sequence of this 5.6 kDa polypeptide (51 amino acid residues) was determined. Most probably the 5.6 kDa polypeptide forms an α-helix between Trp 5 and Ile 42 with an asymmetrical (bipolar) distribution of polar amino acid residues along the helix axis: (i) At one side of the α-helix 5 Gln and 2 Asn residues are the possible binding sites for 7 BChlc molecules, (ii) On the other side Ser, Thr, His residues seem to be polypeptide-polypeptide interaction sites within the BChlc-protein complexes. It appears that the BChl-protein complex (chlorosome subunit, 5.2 × 6 nm) composed of 12 5.6 kDa polypeptides corresponds to the 'globular units' found by electron microscopy within the chlorosomes. 相似文献
14.
Primary photochemistry in the facultative green photosynthetic bacterium Chloroflexus aurantiacus 总被引:1,自引:0,他引:1
R E Blankenship R Feick B D Bruce C Kirmaier D Holten R C Fuller 《Journal of cellular biochemistry》1983,22(4):251-261
The mechanism of primary photochemistry has been investigated in purified cytoplasmic membranes and isolated reaction centers of Chloroflexus aurantiacus. Redox titrations on the cytoplasmic membranes indicate that the midpoint redox potential of P870, the primary electron donor bacteriochlorophyll, is +362 mV. An early electron acceptor, presumably menaquinone has Em 8.1 = -50 mV, and a tightly bound photooxidizable cytochrome c554 has Em 8.1 = +245 mV. The isolated reaction center has a bacteriochlorophyll to bacteriopheophytin ratio of 0.94:1. A two-quinone acceptor system is present, and is inhibited by o-phenanthroline. Picosecond transient absorption and kinetic measurements indicate the bacteriopheophytin and bacteriochlorophyll form an earlier electron acceptor complex. 相似文献
15.
《BBA》1986,849(3):316-324
The formation and decay of antenna-excited states and the primary charge separation in membranes of the green photosynthetic bacterium Chloroflexus aurantiacus were studied by means of picosecond absorbance difference spectroscopy. After chemical oxidation of the primary electron donor, a 35 ps excitation pulse at 532 nm produced singlet- and triplet-excited states of carotenoid and of bacteriochlorophyll a. Excitation of bacteriochlorophyll a caused a bleaching of its Qy absorption band and induced a blue shift of several neighboring bacteriochlorophyll molecules. The singlet-excited state decayed biphasically with lifetimes of about 200 ps and 1.2 ns. A decrease in the lifetime at increasing flash intensity was attributed to singlet-singlet annihilation. In the presence of active reaction centers also the primary-charge separation and secondary electron transfer were observed. The charge separation consisted of the transfer of an electron from the primary donor, P-865, to the primary-acceptor complex of bacteriopheophytin a and bacteriochlorophyll a. Electron transfer to a secondary acceptor occurred with a time constant of 400 ± 50 ps, which is about 30% longer than had been observed with isolated reaction centers (Kirmaier, C., Holten, D., Mancino, L.J. and Blankenship, R.E. (1984) Biochim. Biophys. Acta 765, 138–146). When this secondary acceptor was prereduced chemically, the lifetime of the primary radical pair increased to 10 ns or more. 相似文献
16.
Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies. 总被引:1,自引:0,他引:1 下载免费PDF全文
Z Fetisova A Freiberg K Mauring V Novoderezhkin A Taisova K Timpmann 《Biophysical journal》1996,71(2):995-1010
A theory of excitation energy transfer within the chlorosomal antennae of green bacteria has been developed for an exciton model of aggregation of bacteriochlorophyll (BChl) c (d or e). This model of six exciton-coupled BChl chains with low packing density, approximating that in vivo, and interchain distances of approximately 2 nm was generated to yield the key spectral features found in natural antennae, i.e., the exciton level structure revealed by spectral hole burning experiments and polarization of all the levels parallel to the long axis of the chlorosome. With picosecond fluorescence spectroscopy it was demonstrated that the theory explains the antenna-size-dependent kinetics of fluorescence decay in chlorosomal antenna, measured for intact cells of different cultures of the green bacterium C. aurantiacus, with different chlorosomal antenna size determined by electron microscopic examination of the ultrathin sections of the cells. The data suggest a possible mechanism of excitation energy transfer within the chlorosome that implies the formation of a cylindrical exciton, delocalized over a tubular aggregate of BChl c chains, and Forster-type transfer of such a cylindrical exciton between the nearest tubular BChl c aggregates as well as to BChl a of the baseplate. 相似文献
17.
Frese Raoul Oberheide Uwe van Stokkum Ivo van Grondelle Rienk Foidl Markus Oelze Jürgen van Amerongen Herbert 《Photosynthesis research》1997,54(2):115-126
The organization of bacteriochlorophyll c (BChl c) molecules was studied in normal and carotenoid-deficient chlorosomes isolated from the green phototrophic bacterium Chloroflexus aurantiacus. Carotenoid-deficient chlorosomes were obtained from cells grown in the presence of 60 µg of 2-hydroxybiphenyl per ml. At this concentration, BChl c synthesis was not affected while the formation of the 5.7 kDa chlorosome polypeptide was inhibited by about 50% (M. Foidl et al., submitted). Absorption, linear dichroism and circular dichroism spectroscopy showed that the organization of BChl c molecules with respect to each other as well as to the long axis of the chlorosomes was similar for both types of chlorosomes. Therefore, it is concluded that the organization of BChl c molecules is largely independent on the presence of the bulk of carotenoids as well as of at least half of the normal amount of the 5.7 kDa polypeptide. The Stark spectra of the chlorosomes, as characterized by a large difference polarizability for the ground- and excited states of the interacting BChl c molecules, were much more intense than those of individual pigments. It is proposed that this is caused by the strong overlap of BChl c molecules in the chlorosomes. In contrast to individual chlorophylls, BChl c in chlorosomes did not give rise to a significant difference permanent dipole moment for the ground- and excited states. This observation favors models for the BChl c organization which invoke the anti-parallel stacking of linear BChl c aggregates above those models in which linear BChl c aggregates are stacked in a parallel fashion. The difference between the Stark spectrum of carotenoid-deficient and WT chlorosomes indicates that the carotenoids are in the vicinity of the BChls. 相似文献
18.
Picosecond photodichroism (photoselection) measurements have been carried out on reaction centers from the facultative green photosynthetic bacterium Chloroflexus aurantiacus using weak 30 ps flashes in the long-wavelength band of the primary electron donor, P. Absorption changes due to the chemical and photochemical oxidation of P and the reduction of quinone also have been examined. Our results on Chloroflexus suggest that the Qy transition-dipoles of the bacteriopheophytin molecules participating in, or affected by, the primary reactions are oriented essentially perpendicular to the 865 nm transition dipole of P. This is in agreement with previous work on reaction centers from purple bacteria, such as Rhodopseudomonas sphaeroides. The data also suggest that the 812 nm ground-state transition is oriented at an angle of 45–65° with respect to the 865 nm transition. The new band that appears near 800 nm upon oxidation of P is polarized mainly parallel to the 865 nm band. These relative polarizations of the absorption bands are in very good agreement with the results of recent linear dichroism studies (Vasmel, H., Meiburg, R.F., Kramer, H.J.M., De Vos, L.J. and Amesz, J. (1983) Biochim. Biophys. Acta 724, 333–339). Possible origins for the absorption changes and the photodichroism spectra are discussed. The data are consistent with either a monomeric or dimeric structure of P-865. 相似文献
19.
The preparation of five different fractions containing bacteriochlorophyll (Bchl) c and their absorption and circular dichroic properties have been described. The fractions investigated were purified chlorosomes, proteolytically modified chlorosomes, chlorosomes treated with lithium dodecyl sulfate (LDS) which were subsequently subjected to size-exclusion chromatography, in vitro Bchl c aggregates and, additionally, the so-called GEF chlorosomes [prepared according to Griebenow and Holzwarth (1989) Biochim. Biophys. Acta 973, 235-240]. Proteolysis of chlorosomes caused a 35-40% decrease in absorption intensity, a 6-8 nm blue shift of the 740-nm peak and, in particular, a drastic increase of rotational strength as revealed by CD spectroscopy. Although oligomeric Bchl c aggregates and LDS-treated chlorosomes had absorption characteristics similar to Bchl c in vivo, the data clearly indicated that protein, perhaps the chlorosome-specific Mr-3700 polypeptide, was involved in the organization of Bchl c in chlorosomes from C. aurantiacus. Furthermore, the results showed that the LDS-treated chlorosome fraction was most likely comprised of a micellar complex of Bchl c with LDS which represented an entity entirely different from chlorosomes. 相似文献
20.
S Dracheva J C Williams G Van Driessche J J Van Beeumen R E Blankenship 《Biochemistry》1991,30(48):11451-11458
The complete nucleotide sequence of the cytochrome c-554 gene from the green photosynthetic bacterium Chloroflexus aurantiacus has been determined. The derived amino acid sequence showed that the cytochrome precursor protein consists of 414 residues and contains 4-Cys-X-X-Cys-His- heme binding motifs. The only regions of the cytochrome c-554 sequence that were found to be significantly similar to the sequences of cytochromes from other organisms were the heme binding sites. The highest similarity was found with the heme binding segments in the four-heme reaction center cytochrome subunit from the purple photosynthetic bacterium Rhodopseudomonas viridis. The importance of this similarity for the evolutionary relationship between Chloroflexus and the purple bacteria is discussed. 相似文献