首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Batch kinetic studies were carried out on rhamnolipid biosurfactant production from synthetic medium, industrial wastes viz. distillery and whey waste as substrates. The results indicated that the specific growth rates ( max) and specific product formation rates (V max) from both the wastes are comparatively better than the synthetic medium, revealing that both the industrial wastes (distillery and whey) can be successfully utilized as substrates for biosurfactant production.  相似文献   

2.
This study reports the production of biosurfactant by a psychrophilic strain ofArthrobacter protophormiae during growth on an immiscible carbon source, w-hexadecane. The biosurfactant reduces the surface tension of the medium from 68.0 mN/m to 30.60 mN/m and exhibits good emulsification activity. The strain could grow and produce biosurfactant in the presence of high NaCl concentrations (10.0 to 100.0 g/1). Although the biosurfactant was isolated by growing the organism under psychrophilic conditions (10‡C) it exhibited stable activity over a wide range of temperature (30‡C to 100‡C). It retained its surface-active properties at pH2 to 12. The biosurfactant was effective in recovering up to 90% of residual oil from an oil saturated sandpack column, indicating its potential value in enhanced oil recovery.  相似文献   

3.
An unconventional nutrient medium, distillery spent wash (1:3) diluted) was used to produce di-rhamnolipid biosurfactant by Pseudomonas aeruginosa strain BS2. This research further assessed the potential of the biosurfactant as a washing agent for metal removal from multimetal contaminated soil (Cr-940 ppm; Pb-900 ppm; Cd-430 ppm; Ni-880 ppm; Cu-480 ppm). Out of the treatments of contaminated soil with tap water and rhamnolipid biosurfactant, the latter was found to be potent in mobilization of metal and decontamination of contaminated soil. Within 36 hours of leaching study, di-rhamnolipid as compared to tap water facilitated 13 folds higher removal of Cr from the heavy metal spiked soil whereas removal of Pb and Cu was 9–10 and 14 folds higher respectively. Leaching of Cd and Ni was 25 folds higher from the spiked soil. This shows that leaching behavior of biosurfactant was different for different metals. The use of wastewater for production of biosurfactant and its efficient use in metal removal make it a strong applicant for bioremediation.  相似文献   

4.
Oily sludge degradation by bacteria from Ankleshwar, India   总被引:7,自引:0,他引:7  
Three bacterial strains, Bacillus sp. SV9, Acinetobacter sp. SV4 and Pseudomonas sp., SV17 from contaminated soil in Ankleshwar, India were tested for their ability to degrade the complex mixture of petroleum hydrocarbons (such as alkanes, aromatics, resins and asphaltenes), sediments, heavy metals and water known as oily sludge. Gravimetric analysis showed that Bacillus sp. SV9 degraded approx. 59% of the oily sludge in 5 days at 30 °C whereas Acinetobacter sp. SV4 and Pseudomonas sp. SV17 degraded 37% and 35%. Capillary gas chromatographic analysis revealed that after 5 days the Bacillus strain was able to degrade oily sludge components of chain length C12–C30 and aromatics more effectively than the other two strains. Maximum drop in surface tension (from 70 to 28.4 mN/m) was accompanied by maximum biosurfactant production (6.7 g l−1) in Bacillus sp. SV9 after 72 h, these results collectively indicating that this bacterial strain has considerable potential for bioremediation of oily sludge.  相似文献   

5.
Biosurfactants are amphiphilic compounds produced by several microorganisms that reduce the surface tension. Low toxicity, optimal activity in extreme conditions, biodegradability and production from several wastes are main advantages of biosurfactants as compared to synthetic surfactants. Production of biosurfactant by a white rot fungus Pleurotus djamor on sunflower seed shell in solid-state fermentation was determined by emulsification indexes, oil spreading activity and surface tension (28.82 ± 0.3mN/m) measurement. The critical micelle concentration was detected as 0.964 ± 0.09 mg/mL. Also, the chemical and physicochemical properties of the biosurfactant produced were investigated. Considering the results of the chemical contents analysis, HPLC, FT-IR and 1H-NMR, it can be concluded that the produced biosurfactant has a complex structure. Besides, resistance of its activity to environmental factors such as temperature, pH and salt concentration, as well as its thermal stability, were investigated. Additionally, the produced biosurfactant formed stabile emulsions with different hydrocarbons. Lastly, the performance of removing waste frying oil from contaminated sand of produced biosurfactant was detected as 76.57 ± 6%. Owing to its high emulsification capacity, low surface tension and critical micelle concentration, the biosurfactant, shows great potential for use in hydrocarbon removal applications.  相似文献   

6.
Shipping operations produce oily wastes that must be managed properly to avoid environmental pollution. The aim of this study was to characterize microorganisms occurring in ship bilge wastes placed in open lagoons and, particularly, to assess their potential to degrade polycyclic aromatic hydrocarbons (PAHs). A first-order kinetic was suitable for describing hydrocarbon biodegradation after 17 days of treatment. The calculated rate constants were 0.0668 and 0.0513 day–1 with a corresponding half-life of 10.3 and 13.5 days for the aliphatic and aromatic hydrocarbon fractions, respectively. At day 17, PAH removal percentages were: acenaphtylene 100, fluorene 95.2, phenanthrene 93.6, anthracene 70.3, and pyrene 71.5. Methyl phenanthrene removals were lower than that of their parent compound (3-methyl phenanthrene 83.6, 2-methyl phenanthrene 80.8, 1-methyl phenanthrene 77.3, 9-methyl phenanthrene 75.1, and 2,7-dimethyl phenanthrene 76.6). Neither pure cultures nor the microbial community from these wastes showed extracellular biosurfactant production suggesting that the addition of an exogenously produced biosurfactant may be important in enhancing hydrocarbon bioavailability and biodegradation. DNA analysis of bilge waste samples revealed a ubiquitous distribution of the nahAc genotype in the dump pools. Although almost all of the isolates grew on naphthalene as sole carbon source, only some of them yielded nahAc amplification under the experimental conditions used. The variety of PAHs in bilge wastes could support bacteria with multiple degradation pathways and a diversity of catabolic genes divergent from the classical nah-like type.  相似文献   

7.
A Bacillus sp. strain DHT, isolated from oil-contaminated soil, grew and produced biosurfactant when cultured in variety of substrate at salinities of up to 100 g l−1 and temperatures up to 45°C. It was capable of utilizing crude oil, fuels, various pure alkanes and PAHs as a sole carbon and energy source across a wide range of temperature and salinity. Over the range evaluated, the degradation of hydrocarbon and biosurfactant production was not influenced by salinity (0–10% wv−1) and temperature (30–45°C). The biosurfactant produced by the organism emulsified a range of hydrocarbons with hexadecane as the best substrate and toluene as the poorest. From 16S rDNA analysis, strain DHT was related to Bacillus licheniformis.  相似文献   

8.
Biosurfactant production through a fermentation process involving the biodegradation of soybean oil refining wastes was studied. Pseudomonas aeruginosa MR01 was able to produce extracellular biosurfactant when it was cultured in three soybean oil refinement wastes; acid oil, deodorizer distillate and soapstock, at different carbon to nitrogen ratios. Subsequent fermentation kinetics in the three types of waste culture were also investigated and compared with kinetic behavior in soybean oil medium. Biodegradation of wastes, biosurfactant production, biomass growth, nitrate consumption and the number of colony forming units were detected in four proposed media, at specified time intervals. Unexpectedly, wastes could stimulate the biodegradation activity of MR01 bacterial cells and thus biosurfactant synthesis beyond that of the refined soybean oil. This is evident from higher yields of biodegradation and production, as revealed in the waste cultures (Ydeg|(Soybean oil) = 53.9 % < Ydeg|(wastes) and YP/S|(wastes) > YP/S|(Soybean oil) = 0.31 g g?1, respectively). Although production yields were approximately the same in the three waste cultures (YP/S|(wastes) ? 0.5 g g?1), microbial activity resulted in higher yields of biodegradation (96.5 ± 1.13 %), maximum specific growth rate (μ max  = 0.26 ± 0.02 h?1), and biosurfactant purity (89.6 %) with a productivity of 14.55 ± 1.10 g l?1, during the bioconversion of soapstock into biosurfactant. Consequently, applying soybean oil soapstock as a substrate for the production of biosurfactant with commercial value has the potential to provide a combination of economical production with environmental protection through the biosynthesis of an environmentally friendly (green) compound and reduction of waste load entering the environment. Moreover, this work inferred spectrophotometry as an easy method to detect rhamnolipids in the biosurfactant products.  相似文献   

9.
This study reports characterization of a biosurfactant‐producing fungal isolate from oil contaminated soil of Missa Keswal oil field, Pakistan. It was identified as Fusarium sp. BS‐8 on the basis of macroscopic and microscopic morphology, and 18S rDNA gene sequence homology. The biosurfactant‐producing capability of the fungal isolates was screened using oil displacement activity, emulsification index assay, and surface tension (SFT) measurement. The optimization of operational parameters and culture conditions resulted in maximum biosurfactant production using 9% (v/v) inoculum at 30°C, pH 7.0, using sucrose and yeast extract, as carbon and nitrogen sources, respectively. A C:N ratio of 0.9:0.1 (w/w) was found to be optimum for growth and biosurfactant production. At optimal conditions, it attained lowest SFT (i.e., 32 mN m?1) with a critical micelle concentration of ≥ 1.2 mg mL?1. During 5 L shake flask fermentation experiments, the biosurfactant productivity was 1.21 g L?1 pure biosurfactant having significant emulsifying index (E24, 70%) and oil‐displacing activity (16 mm). Thin layer chromatography and Fourier transform infrared spectrometric analyses indicated a lipopeptide type of the biosurfactant. The Fusarium sp. BS‐8 has substantial potential of biosurfactant production, yet it needs to be fully characterized with possibility of relatively new class of biosurfactants. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1065–1075, 2014  相似文献   

10.
We studied formation and structural features of biosurfactants produced by five oil-degrading Pseudomonas and Rhodococcus strains. These bacteria were found to be capable of intense formation of extracellular glycolipid biosurfactants when grown on mineral salts medium with 2% hexadecane. Under these conditions, the surface tension of the cultures decreased from 77 mN/m to 31–34 mN/m. The strain Rhodococcus sp. S26 forming up to 780 mg glycolipids/l of culture medium proved the most efficient biosurfactant producer. Extracellular glycolipids were purified from the crude extracts by column chromatography. Their structural features were determined by thin layer chromatography and electrospray ionization mass spectrometry. Strains Pseudomonas putida BS3701 and Pseudomonas fluorescens 142NF synthesized a number of glycolipids identified as rhamnolipid B and its homologues. Glycolipids produced by Rhodococcus sp. X5 and Rhodococcus sp. S26 were assigned to trehalose tetraesters.  相似文献   

11.
Pseudomonas aeruginosa F722 produces a biosurfactant (BS) during its degradation of carbon and hydrocarbon compounds. The culture conditions for upgrading the biosurfactant productivity were investigated. The concentration of the biosurfactant produced byP. aeruginosa F722 was 0.78 g/L in C-medium; however, this increased to 1.66 g/L in BS medium, which was experimentally adjusted to optimal conditions. NaNO2 was found to be most effective for microbial growth, with an O.D600nm of 1.18 for 0.1% NaNO2. Microbial growths, according to the O.D600nm were 2.53, 2.68, 2.89, and 2.87 for glucose, glycerol,n-C10, andn-C22, respectively. Clear zone diameters (cm), indicating biosurfactant activity, were 9.0, 8.8, 5.7, and 8.5 for glucose, glycerol,n-C10, andn-C22, respectively. Microbial growth was not consistent with the biosurfactant activity. The best biosurfactant activity was found with a C/N ratio of 20. Under optimal culture condition, the average surface tension decreased from 70 to 30 mN/m after 5 days. With aeration of 1.0 vvm, the biosurfactant produced increased to 1.94 g/L (up to 20%) compared to that of 1.66 g/L with no aeration. With aeration, the velocities of glucose degradation during both the log and stationary growth phases increased from 0.25 and 0.18 h−1 to 0.33 and 0.29 h−1, respectively, and the time for the culture to arrive at the maximum clear zone diameter became shorter, from 80 down to 60 h with no aeration.  相似文献   

12.
The possibility of enhanced biosurfactant (BS) synthesis by the cultivation of Acinetobacter calcoaceticus IMV B-7241 on a mixture of energetically nonequivalent substrates (hexadecane and glycerol) was shown. Based on theoretical calculations of the energy requirements for biomass production and the synthesis of surface-active trehalose monomycolate from the energy-deficient substrate (glycerol), the concentration of the energy-excessive substrate (hexadecane), which increased the efficiency of the substrate carbon conversion to BS, was determined. The synthesis of extracellular BS on a mixture of hexadecane and glycerol in a molar ratio of 1: 7 at C/N ratio of 30 increased 2.6–3.5-fold compared to that on single-substrate media. Increased BS synthesis by Acinetobacter calcoaceticus IMV B-7241 grown on a hexadecane-glycerol mixture was accompanied by a 1.3–2.4-fold increase in activities of the enzymes involved in their biosynthesis, as well as by simultaneous functioning of two anaplerotic pathways (the glyoxylate cycle and the phosphoenolpyruvate carboxylase reaction).  相似文献   

13.
Cyberlindnera samutprakarnensis JP52T, isolated from cosmetic industrial wastes in Thailand, was found to be an efficient biosurfactant-producing yeast when cultured in a medium containing (2% (w/v) glucose and 2% (v/v) palm oil at 30 °C, 200 rpm for 7 d. The crude biosurfactant had the ability to reduce the surface tension from 55.7 to 30.9 mN/m at 25 °C with a critical micelle concentration (CMC) of 0.046%. Physicochemical analysis of the crude biosurfactant revealed that it had wide ranges of optimum pH and pH stability at 6–9 and 3–10 respectively. It was also thermostable and retained 80% activity even after heat treatment, and it tolerated NaCl at 1.0–10%. Furthermore, it effectively emulsified various vegetable oils with an E24 value of over 80%. A partially purified biosurfactant fraction was analyzed for its structure by MALDI-TOF MS and NMR. This revealed that the biosurfactant mainly contained sophorolipids in C18-(MW 574) and C16-diaceltylated (MW 662) forms.  相似文献   

14.
The gene (vgb) encoding Vitreoscilla (bacterial) hemoglobin (VHb) was electroporated into Gordonia amarae, where it was stably maintained, and expressed at about 4 nmol VHb g−1 of cells. The maximum cell mass (OD600) of vgb-bearing G. amarae was greater than that of untransformed G. amarae for a variety of media and aeration conditions (2.8-fold under normal aeration and 3.4-fold under limited aeration in rich medium, and 3.5-fold under normal aeration and 3.2-fold under limited aeration in mineral salts medium). The maximum level of trehalose lipid from cultures grown in rich medium plus hexadecane was also increased for the recombinant strain, by 4.0-fold in broth and 1.8-fold in cells under normal aeration and 2.1-fold in broth and 1.4-fold in cells under limited aeration. Maximum overall biosurfactant production was also increased in the engineered strain, by 1.4-fold and 2.4-fold for limited and normal aeration, respectively. The engineered strain may be an improved source for producing purified biosurfactant or an aid to microorganisms bioremediating sparingly soluble contaminants in situ.  相似文献   

15.
Eleven biosurfactant producing bacteria were isolated from different petroleum‐contaminated soil and sludge samples. Among these 11 isolates, two were identified as promising, as they reduced the surface tension of culture medium to values below 27 mN m?1. Besides biosurfactant production property, they exhibited good flocculating activity. Microbacterium sp. was identified as a new addition to the list of biosurfactant and bioflocculant‐producers. Optimization of various conditions for rhamnolipid production was carried out for one of the promising isolate, Pseudomonas aeruginosa BS‐161R. Bioglycerol (2.5%), as a cheap renewable carbon source, attained better rhamnolipid yield, while sodium nitrate appeared to be the preferable nitrogen source. The optimum carbon to nitrogen (C/N) and carbon to iron (C/Fe) ratios achieved were 15 and 28,350, respectively, which favored rhamnolipid production. Physical parameters like pH, temperature, and agitation speed also affected the production of rhamnolipids. Results from shake flask optimization indicated that the concentration of bioglycerol, sodium nitrate, and iron were the most significant factors affecting rhamnolipid production, which was supported by the results of central composite rotatable design. After optimization of the culture conditions, the production of rhamnolipids increased by ninefold from 0.369 to 3.312 g L?1. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

16.
This work describes experimental results carried out on the fermentation of Candida lipolytica, which produced a new biosurfactant when grown on a vegetable oil refinery residue as substrate. The cell-free culture broth containing the biosurfactant formed stable emulsions with hydrophobic natural compounds. Emulsification properties of the biosurfactant were not affected by salinity; however, treatment at a higher temperature decreased the emulsification activity, indicating applications in oil recovery. The isolated biosurfactant corresponds to a yield of 4.5 g/l, and the surface tension of water was reduced from 71 to 32 mN/m. Preliminary chemical characterizations showed that the biosurfactant consisted of protein (50%), lipid (20%), and carbohydrate (8%).  相似文献   

17.
Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by the newly isolated and promising strain Pseudomonas putida 21BN. The biosurfactants were identified as rhamnolipids, the amphiphilic surface-active glycolipids usually secreted by Pseudomonas spp. Their production was observed when the strain was grown on soluble substrates, such as glucose or on poorly soluble substrates, such as hexadecane, reaching values of 1.2 g l(-1). When grown on hexadecane as the sole carbon source the biosurfactant lowered the surface tension of the medium to 29 mN m(-1) and formed stable and compact emulsions with emulsifying activity of 69%.  相似文献   

18.
[背景]由微生物产生的生物表面活性剂(biosurfactant,BS)具有低毒性、高效性、生物可降解性等多种特性,能在一定程度上缓解化学表面活性剂所造成的环境问题,因此筛选高产、安全的BS生产菌株备受研究者的关注.[目的]从泡菜水中筛选能代谢合成药食两用型BS的微生物菌株.[方法]运用滴崩法和排油圈法从传统发酵食品泡...  相似文献   

19.
A hydrocarbon degrading and biosurfactant producing, strain DHT2, was isolated from oil-contaminated soil. The organism grew and produced biosurfactant when cultured in variety of substrates at salinities up to 6 g l−1 and temperatures up to 45°C. It was capable of utilizing crude oil, fuels, alkanes and PAHs as carbon source across the wide range of temperature (30–45°C) and salinity (0–6%). Over the range evaluated, the salinity and temperature did not influence the degradation of hydrocarbon and biosurfactant productions. Isolate DHT2 was identified as Pseudomonas aeruginosa by analysis of 16S rRNA sequences (100% homology) and biochemical analysis. PCR and DNA hybridization studies revealed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by DHT2 during growth on both, water miscible and immiscible substrates, including PAH. The biosurfactants lowered the surface tension of medium from 54.9 to 30.2 dN/cm and formed a stable emulsion. The biosurfactant produced by the organism emulsified a range of hydrocarbons with hexadecane as best substrate and toluene was the poorest. These findings further indicate that the isolate could be useful for bioremediation and bio-refining application in petroleum industry.  相似文献   

20.
A Biosurfactant-Producing Pseudomonas aeruginosa Strain   总被引:3,自引:0,他引:3  
A Pseudomonas aeruginosa strain producing an extracellular surfactant (biosurfactant) was isolated. The growth of this strain, referred to as 50.3, on a mineral glycerol-containing medium produces an emulsifying activity (60%) and decreases the surface tension of the culture liquid by a factor of 2.8 (to 25 mN/m). The optimum conditions for its growth and production of biosurfactants are intense aeration, pH 7.0–8.0, and the presence of Mg2+. The optimum biosurfactant properties were achieved when glucose was used as the only source of carbon and energy and NH4Cl was used as a source of nitrogen. The biosurfactant was isolated from the culture liquid by extraction and precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号