首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present work was focused to evaluate the ameliorative property of aqueous extract of Trichosanthes dioica fruit (AQ T. dioica fruit) against arsenic-induced toxicity in male Wistar albino rats. AQ T. dioica fruit was administered orally to rats at 50 and 100 mg/kg body weight for 20 consecutive days prior to oral administration of sodium arsenite (10 mg/kg) for 10 days. Then the rats were sacrificed for the evaluation of body weights, organ weights, hematological profile, serum biochemical profile, and hepatic and renal antioxidative parameters viz. lipid peroxidation, reduced and oxidized glutathione, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and DNA fragmentation. Pretreatment with AQ T. dioica fruit at both doses markedly and significantly normalized body weights, organ weights, hematological profiles, and serum biochemical profile in arsenic-treated animals. Further, AQ T. dioica fruit pretreatment significantly modulated all the aforesaid hepatic and renal biochemical perturbations and reduced DNA fragmentation in arsenic-intoxicated rats. Therefore, from the present findings, it can be concluded that T. dioica fruit possessed remarkable value in amelioration of arsenic-induced hepatic and renal toxicity, mediated by alleviation of arsenic-induced oxidative stress by multiple mechanisms in male albino rats.  相似文献   

2.
We report the modulatory effect of coumarin (1,2-benzopyrone) on potassium bromate (KBrO(3)) mediated nephrotoxicity in Wistar rats. KBrO(3) (125 mg/kg body weight, i.p.) enhances gamma-glutamyl transpeptidase, renal lipid peroxidation, xanthine oxidase and hydrogen peroxide (H(2)O(2)) generation with reduction in renal glutathione content and antioxidant enzymes. It also enhances blood urea nitrogen, serum creatinine, ornithine decarboxylase (ODC) activity and [(3)H]-thymidine incorporation into renal DNA. Treatment of rats orally with coumarin (10 mg/kg body weight and 20 mg/kg body weight) resulted in a significant decrease in gamma-glutamyl transpeptidase, lipid peroxidation, xanthine oxidase, H(2)O(2) generation, blood urea nitrogen, serum creatinine, renal ODC activity and DNA synthesis (P < 0.001). Renal glutathione content (P < 0.01) and antioxidant enzymes were also recovered to significant level (P < 0.001). These results show that coumarin may be used as an effective chemopreventive agent against KBrO(3)-mediated renal oxidative stress, toxicity and tumor promotion response in Wistar rats.  相似文献   

3.
Ferric nitrilotriacetate (Fe-NTA) is a known potent nephrotoxic agent. In this communication, we report the chemopreventive effect of soy isoflavones on renal oxidative stress, toxicity and cell proliferation response in Wistar rats. Fe-NTA (9 mg Fe/kg body weight, intraperitoneally) enhances gamma-glutamyl transpeptidase, renal lipid peroxidation, xanthine oxidase and hydrogen peroxide (H2O2) generation with reduction in renal glutathione content, antioxidant enzymes, viz., glutathione peroxidase, glutathione reductase, catalase, glucose-6-phosphate dehydrogenase and phase-II metabolising enzymes such as glutathione-S-transferase and quinone reductase. Fe-NTA treatment also induced tumor promotion markers, viz., ornithine decarboxylase (ODC) activity and thymidine [3H] incorporation into renal DNA. A sharp elevation in the levels of blood urea nitrogen and serum creatinine has also been observed. Treatment of rats orally with soy isoflavones (5 mg/kg body weight and 10 mg/kg body weight) resulted in significant decreases in gamma-glutamyl transpeptidase, lipid peroxidation, xanthine oxidase, H2O2 generation, blood urea nitrogen, serum creatinine, renal ODC activity and DNA synthesis (P < 0.001). Renal glutathione content (P < 0.01), glutathione metabolizing enzymes (P < 0.001) and antioxidant enzymes were also returned to normal levels (P < 0.001). Thus, our data suggest that soy isoflavones may be used as an effective chemopreventive agent against Fe-NTA-mediated renal oxidative stress, toxicity and cell proliferation response in Wistar rats.  相似文献   

4.
Khan N  Sultana S 《Life sciences》2005,77(11):1194-1210
Ferric nitrilotriacetate (Fe-NTA) is a well-known renal carcinogen. In this communication, we show the chemopreventive effect of Ficus racemosa extract against Fe-NTA-induced renal oxidative stress, hyperproliferative response and renal carcinogenesis in rats. Fe-NTA (9 mg Fe/kg body weight, intraperitoneally) enhances renal lipid peroxidation, xanthine oxidase, gamma-glutamyl transpeptidase and hydrogen peroxide (H(2)O(2)) generation with reduction in renal glutathione content, antioxidant enzymes, viz., glutathione peroxidase, glutathione reductase, catalase, glucose-6-phosphate dehydrogenase and phase-II metabolising enzymes such as glutathione-S-transferase and quinone reductase. It also enhances blood urea nitrogen, serum creatinine, ornithine decarboxylase (ODC) activity and thymidine [(3)H] incorporation into renal DNA. It also enhances DEN (N-diethylnitrosamine) initiated renal carcinogenesis by increasing the percentage incidence of tumors. Treatment of rats orally with F. racemosa extract (200 and 400 mg/kg body weight) resulted in significant decrease in gamma-glutamyl transpeptidase, lipid peroxidation, xanthine oxidase, H(2)O(2) generation, blood urea nitrogen, serum creatinine, renal ODC activity, DNA synthesis (P<0.001) and incidence of tumors. Renal glutathione content (P<0.01), glutathione metabolizing enzymes (P<0.001) and antioxidant enzymes were also recovered to significant level (P<0.001). Thus, our data suggests that F. racemosa extract is a potent chemopreventive agent and suppresses Fe-NTA-induced renal carcinogenesis and oxidative damage response in Wistar rats.  相似文献   

5.
In this study, 12 months old female Swiss albino rats were used. They were randomly divided into four groups. The animals of group I were fed with pellet chow. Group II were fed with pellet chow and treated with 250 μg/kg CrCl3.6H2o and 100 mg/kg niacinfor 45 days. Group III were fed a lipogenic diet consisting of 2% cholesterol, 0.5% cholicacidand 2%sun flower oil added to the pellet chow, andgiven 3%alcoholic water for 60 days. Group IV were fed with the same lipogeni cdiet for 60 day sand treated by gavage technique to rats at a dose of 250 mu/kg CrCl3.6H2O and 100 mg/kg niacin for 45 days, 15 days after experimental animals were rendered hyperlipidemic. At the 60th day, renal tissue and blood samples were taken from the animals. The sections were examined under light and electron microscopy. The degenerative changes were much more in the hyperlipidemic rats than the control group. The changes in renal tissue were also observed in hyperlipidemic animals given niacin and chromium. In the hyperlipidemic rats, renal glutathione levels decreased and renal lipid peroxidation levels, and serum urea and creatinine levels were increased. But, renal glutathione levels increased and lipid peroxidation levels and serum urea and creatinine levels decreased in hyperlipidemic rats given niacin and chromium. The purpose of this study was to investigate whether a protective effect of a combination of niacin and chromium is present on the renal tissue of hyperlipidemic rats or not. In conclusion, we can say that niacin and chromium do not have a protective effect on the morphology of the renal tissue of hyperlipidemic rats, except a protective effect on their biochemical parameters.  相似文献   

6.
Male albino rats were intramuscularly administered a single dose of lead acetate (100 μmol/kg b.wt). Another group of rats were injected with sodium selenite (10 μmol/kg b.wt) before lead intoxication. After 3 and 24 hours, lead treatment resulted in significant increases in acid and alkaline phosphatases, GOT and GPT, total proteins, and cholesterol in serum. The total triglycerides in serum was decreased after 24 hours of intoxication. Lead treatment also produced significant elevation of lipid peroxidation in liver and kidney. The antioxidant capacity of hepatic and renal cells in terms of the activities of superoxide dismutase, glutathione reductase, and glutathione content was diminished. It appears from these results that lead may exert its toxic effect via peroxidative damage to renal and hepatic cell membranes after 24 hours. Selenium administration prior to lead injection produced pronounced prophylactic action against lead effects, and it is observed that selenium enhances the endogenous antioxidant capacity of the cells by increasing the activities of the superoxide dismutase and glutathione reductase and the glutathione content. As a result, the lipid peroxidation was decreased in both liver and kidney. © 1998 John Wiley & Sons, Inc. J Biochem Mol Toxicol 12: 345–349, 1998  相似文献   

7.
Tamarix gallica, a hepatic stimulant and tonic, was examined for its ability to inhibit thioacetamide (TAA)-induced hepatic oxidative stress, toxicity and early tumor promotion response in male Wistar rats. TAA (6.6 mmol/kg body wt. i.p) enhanced lipid peroxidation, hydrogen peroxide content, glutathione S-transferase and xanthine oxidase with reduction in the activities of hepatic antioxidant enzymes viz., glutathione peroxidase, superoxide dismutase and caused depletion in the level of hepatic glutathione content. A marked increase in liver damage markers was also observed. TAA treatment also enhanced tumor promotion markers, ornithine decarboxylase (ODC) activity and [3H] thymidine incorporation into hepatic DNA. Pretreatment of rats orally with Tamarix gallica extract (25 and 50 mg/kg body weight) prevented TAA-promoted oxidative stress and toxicity. Prophylaxis with Tamarix gallica significantly reduced the susceptibility of the hepatic microsomal membrane for iron-ascorbate induced lipid peroxidation, H2O2 content, glutathione S-transferase and xanthine oxidase activities. There was also reversal of the elevated levels of liver marker parameters and tumor promotion markers. Our data suggests that Tamarix gallica is a potent chemopreventive agent and may suppress TAA-mediated hepatic oxidative stress, toxicity, and tumor promotion response in rats.  相似文献   

8.
Heme oxygenase (HO)-1 catalyzes the rate-limiting step in heme degradation releasing iron, carbon monoxide, and biliverdin. Induction of HO-1 occurs as an adaptive and protective response to oxidative stress. Ischemia and reperfusion (IR) injury seems to be mainly caused by the oxidative stress. In this study, we have examined whether prior induction of HO-1 with buthionine sulfoximine (BSO), a glutathione (GSH) depletor, affects the subsequent renal IR injury. BSO (2 mmol/kg body weight) was administered intraperitoneally into rats, the levels of HO-1 protein increased within 4 h after the injection. When BSO was administered into rats at 5 h prior to the renal 45 min of ischemia, the renal IR injury was assessed by determining the levels of blood urea nitrogen and serum creatinine, markers for renal injury, after 24 h of reperfusion. The renal injury was significantly improved as compared to the rats treated with IR alone. Administration of zinc-protoporphyrin IX, an inhibitor of HO activity, reduced the efficacy of BSO pretreatment on the renal IR injury. Our findings suggest that the prior induction of HO-1 ameliorates the subsequent renal IR injury.  相似文献   

9.
Intraperitoneal injection of the iron chelate ferric-nitrilotriacetate (Fe-NTA) induces in rodents renal and hepatic suffering, associated with oxidative damage. We investigated the oxidation pattern in plasma of treated rats in relation to liver and kidney, monitoring the variation of the lipid components more susceptible to oxidation, unsaturated fatty acids (UFA) and alpha-tocopherol, as biomarkers of the oxidative damage. A sublethal dose of Fe-NTA induced a strong and extremely significant decrease of UFA levels at 1 h after injection in the plasma compartment and at 3 h in the kidney, with reductions up to 40-50% of the control values, together with an increase of conjugated dienes fatty acids hydroperoxides and a consumption of alpha-tocopherol. The same modifications were observed in the liver, but to a lesser extent. Histological observation proved that biochemical changes in the lipid fraction were a direct consequence of an ongoing membrane lipid peroxidation process. Our data show that oxidative damage to the lipid fraction is initially evident in the plasma compartment, where Fe-NTA toxicity is assumed to be caused by the elevation of serum free iron concentration, and proceeds with different speed and severity in the kidney and liver.  相似文献   

10.
Iron nitrilotriacetate (Fe-NTA), a chief environmental pollutant, is known for its extensive toxic manifestations on renal system. In the present study, caffeic acid, one of the most frequently occurring phenolic acids in fruits, grains, and dietary supplements was evaluated for its shielding effect against the Fe-NTA-induced oxidative, inflammatory, and pathological damage in kidney. Fe-NTA was administered (9 mg Fe/kg body weight) intraperitoneally to the Wistar male rats on 20th day while caffeic acid was administered orally (20 and 40 mg/kg body weight) before administration of Fe-NTA. The intraperitoneal administration of Fe-NTA-enhanced lipid peroxidation, xanthine oxidase, and hydrogen peroxide generation with reduction in renal glutathione content, antioxidant enzymes, viz., catalase, glutathione peroxidase, and glutathione reductase. A sharp elevation in the levels of myloperoxidase, blood urea nitrogen (BUN), and serum creatinine has also been observed. Tumor promotion markers viz., ornithine decarboxylase (ODC) and [(3)H] thymidine incorporation into renal DNA were also significantly increased. Treatment of rats orally with caffeic acid (20 and 40 mg/kg body weight) resulted in a significant decrease in xanthine oxidase (P < 0.001), lipid peroxidation (P < 0.001), γ-glutamyl transpeptidase (P < 0.01), and H(2)O(2) (P < 0.01). There was significant recovery of renal glutathione content (P < 0.001) and antioxidant enzymes (P < 0.001). There was also a reversal in the enhancement of renal ODC activity, DNA synthesis, BUN, and serum creatinine (P < 0.001). All these changes were supported by histological observations. The results indicate that caffeic acid may be beneficial in ameliorating the Fe-NTA-induced oxidative damage and tumor promotion in the kidney of rats.  相似文献   

11.
Cadmium (Cd) is an environmental and industrial pollutant that affects various organs in humans and animals. A body of evidence has accumulated implicating the free radical generation with subsequent oxidative stress in the biochemical and molecular mechanisms of Cd toxicity. Since kidney is the critical target of Cd toxicity, we carried out this study to investigate the effects of diallyl tetrasulfide (DTS), an organosulfur compound derived from garlic on Cd induced toxicity in the kidney of rats and also in the kidney cell line (vero cells). In experimental rats, subcutaneous administration of Cd (3 mg/kg bw/day) for 3 weeks induced renal damage, which was evident from significantly increased levels of serum urea and creatinine with significant decrease in creatinine clearance. A markedly increased levels of lipid peroxidation markers (thiobarbituric acid reactive substances and lipid hydroperoxides) and protein carbonyl contents with significant decrease in nonenzymic antioxidants (total sulphydryl groups, reduced glutathione, vitamin C and vitamin E) and enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase) as well as glutathione metabolizing enzymes (glutathione reductase, and glucose-6-phosphate dehydrogenase) were also observed in Cd intoxicated rats. Coadministration of DTS (40 mg/kg bw/day) and Cd resulted in the reversal of the kidney function accompanied by a significant decrease in lipid peroxidation and increase in the antioxidant defense system. In vitro studies with vero cells showed that incubation of DTS (5-50 microg/ml) with Cd (10 microM) significantly reduced the cell death induced by Cd. DTS at 40 microg/ml effectively blocked the cell death and lipid peroxidation induced by Cd (10 microM) indicating its cytoprotective property. Further, the flow cytometric assessment on the level of intracellular reactive oxygen species using a fluorescent probe 2', 7'-dichlorofluorescein diacetate (DCF-DA) confirmed the Cd induced intracellular oxidative stress in vero cells, which was significantly suppressed by DTS (40 microg/ml). The histopathological studies in the kidney of rats also showed that DTS (40 mg/kg bw/day) markedly reduced the toxicity of Cd and preserved the architecture of renal tissue. The present study suggests that the cytoprotective potential of DTS in Cd toxicity might be due to its antioxidant and metal chelating properties, which could be useful for achieving optimum effects in Cd induced renal damage.  相似文献   

12.
BACKGROUND: The aim of this study was to analyze the effects of 45min of hepatic ischemia and 1h of reperfusion on renal oxidative stress parameters, on renal tissue damage, and the role of Desferrioxamin (Dfx) and Q on these parameters. METHODS: Thirty Wistar albino rats were randomized to five groups. Group I was the control group. Group II received no treatment. Groups III and IV received intramuscular injections of desferrioxamine (100mg/kg) and quercetin (50mg/kg), respectively. Group V was administered Dfx and quercetin in combination. After treatment for 3 days, groups II, III, IV, and V were exposed to total hepatic ischemia for 45min. Plasma alanine aminotransferase levels, renal malondialdehyde and reduced glutathione (GSH) activities were measured after reperfusion for 1h. Histopathological and ultrastructural analysis of renal tissues was carried out. RESULTS: Plasma creatinine and BUN levels were markedly increased in the IR group and pretreated groups. Kidney MDA increased in the IR group, Q and Dfx+Q significantly decreased kidney MDA Kidney GSH levels markedly decreased in the IR group, Dfx significantly increased kidney GSH. No evidence of overt injury was observed in any renal tissue under light and electron microscopy. CONCLUSIONS: Our data demonstrated that 45min of hepatic ischemia and 1h of reperfusion may alter renal functions and may cause oxidative stress on renal tissue. Q and Dfx seem to have a beneficial effect via the GSH system and modulation of MDA levels.  相似文献   

13.
Wilson's disease (WD) is an inherited disorder, characterized by selective copper deposition in liver and brain, chronic hepatitis and extra-pyramidal signs. In this study, we investigated changes of biochemical markers of oxidative stress and apoptosis in liver, striatum and cerebral cortex homogenates from Long-Evans Cinnamon (LEC) rats, a mutant strain isolated from Long Evans (LE) rats, in whom spontaneous hepatitis develops shortly after birth. LEC and control (LE) rats at 11 and 14 weeks of age were used. We determined tissue levels of glutathione (GSH/GSSG ratio), lipid peroxides, protein-thiols (P-SH), nitric oxide metabolites, activities of caspase-3 and total superoxide-dismutase (SOD), striatal levels of monoamines and serum levels of hepatic amino-transferases. We observed a decrease of protein-thiols, GSH/GSSG ratio and nitrogen species associated to increased lipid peroxidation in the liver and striatum - but not in the cerebral cortex - of LEC rats, accompanied by dramatic increase in serum amino-transferases and decrease of striatal catecholamines. Conversely, SOD and caspase-3 activity increased consistently only in the cortex of LEC rats. Hence, we assume that enhanced oxidative stress may play a central role in the cell degeneration in WD, at the main sites of copper deposition, with discrete pro-apoptotic conditions developing in distal areas.  相似文献   

14.
Arsenic has a long history as a potent human poison, chronic exposure over a period of time may result in the manifestation of toxicity in practically all systems of the body. In the present investigation the efficacy of naringenin (NRG), a naturally occurring citrus flavanone against arsenic-induced hepatotoxic and nephrotoxic manifestations have been studied in rats. Arsenic trioxide was administered orally at the dose of 2 mg/kg/day with or without combination of NRG (20 or 50 mg/kg/day) for 28 days. At the end of the experimental period the hepatic and renal dysfunction was evaluated by histological examination, serum biomarkers and markers of oxidative stress; lipid peroxidation (LPO), reduced glutathione (GSH) and antioxidant enzymes. Arsenic intoxication increased serum bilirubin, urea, uric acid and creatinine levels, additionally enhanced the activities of hepatic marker enzymes aspartate transaminase, alanine transaminase and alkaline phosphatase. Also, the hepatic and renal tissues showed a marked elevation in LPO levels with a decrease in GSH content and the activities of antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase on arsenic treatment. Simultaneous treatment with NRG restored the activities of serum biomarkers and antioxidant enzymes in the tissues in a dose-dependent manner. Furthermore, the histopathological studies confirmed the protective effect of NRG co-treatment by reducing the pathological changes due to arsenic intoxication in both liver and kidney. Thus, our present study demonstrates that NRG has a potential to protect arsenic-induced oxidative hepatic and renal dysfunction.  相似文献   

15.
The effect of triazophos (O, O-diethyl O-1-phenyl-1 H-1, 2, 4-triazol-3-yl phosphorothioate), a widely used insecticide was studied on the induction of oxidative stress and histological alterations at sub-chronic doses in male albino rats. Oral administration of triazophos at concentrations of 1.64, 3.2 and 8.2 mg/kg body wt for 30 days produced dose as well as time-dependent increase in the lipid peroxidation (determined by malondialdehyde levels) and glutathione-S-transferase (GST) activity in serum with aconcomitant decrease in ferric reducing ability of plasma (FRAP) and blood glutathione (GSH) content. Histopathological examination of liver of triazophos-treated rats showed significant and progressive degenerative changes as compared to control, which could be due to induction of oxidative stress. However, no significant histopathological changes were observed in spleen, kidney and brain at either dose of triazophos with respect to control. These results indicated that oral administration of triazophos was associated with enhanced lipid peroxidation and compromised antioxidant defence in rats in dose and time-dependent manner. Thus the present study demonstrated for the first time the role of oxidative stress as the important mechanism involved in the stimulation of hepatic histoarchitectural alterations at sub-chronic doses of triazophos in rats.  相似文献   

16.
The present study was undertaken to examine the attenuative effect of Piper betle leaf extract (PBE) against cadmium (Cd) induced oxidative hepatic dysfunction in the liver of rats. Pre-oral supplementation of PBE (200 mg/kg BW) treated rats showed the protective efficacy against Cd induced hepatic oxidative stress. Oral administration of Cd (5 mg/kg BW) for four weeks to rats significantly (P > 0.05) elevated the level of serum hepatic markers such as serum aspartate transaminase (AST), serum alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), gamma-glutamyl transpeptidase (GGT), bilirubin (TBRNs), oxidative stress markers viz., thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH), protein carbonyls (PC) and conjugated dienes (CD) and significantly (P > 0.05) reduced the enzymatic antioxidants viz., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD) and non-enzymatic antioxidants Viz., reduced glutathione (GSH), total sulfhydryls (TSH), vitamin C and vitamin E in the liver. Pre-oral supplementation of PBE (200 mg/kg BW) in Cd intoxicated rats, the altered biochemical indices and pathological changes were recovered significantly (P > 0.05) which showed ameliorative effect of PBE against Cd induced hepatic oxidative stress. From the above findings, we suggested that the pre-administration of P. betle leaf extract exhibited remarkable protective effects against cadmium-induced oxidative hepatic injury in rats.  相似文献   

17.
We recently reported that feeding cyanidin 3-O-beta-d-glucoside (C3G), a typical anthocyanin pigment, lowered the serum thiobarbituric acid-reactive substance (TBARS) concentration and increased the oxidation resistance of the serum to lipid peroxidation in rats. These results suggest that C3G acts as a potent antioxidant in vivo when acute oxidative stress is encountered. In the present study, we evaluated whether feeding C3G suppresses oxidative injury to the liver caused by hepatic ischemia-reperfusion (I/R), which was used as a model for oxidative stress. Rats were fed a diet containing C3G (2 g/kg diet) for 14 days and then subjected to hepatic I/R. I/R treatment elevated the liver TBARS concentration and the serum activities of marker enzymes (glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and lactate dehydrogenase) for liver injury and lowered the liver reduced glutathione concentration. Feeding C3G significantly suppressed these changes caused by hepatic I/R. Although the liver ascorbic acid concentration was also lowered by hepatic I/R, feeding C3G restored this concentration more quickly compared to the control rats. These results indicate that orally administered C3G suppresses I/R-induced oxidative damage and suggest that C3G functions as a potent antioxidant in vivo under oxidative stress.  相似文献   

18.
The association between hypercholesterolemia and kidney damage has been well known for last few decades. The oxidative stress and inflammatory responses are involved in renal injury, which is upregulated in hypercholesterolemic condition. The present study is aimed to evaluate the possible effect of lupeol and its ester derivative, lupeol linoleate in renal damage associated with hypercholesterolemic rats. Hypercholesterolemia was induced in male Wistar rats by feeding them with a high cholesterol diet (HCD) comprising normal rat chow supplemented with 4% cholesterol and 1% cholic acid for 30 days. Lupeol and lupeol linoleate were supplemented (50 mg/kg body wt/day) to HCD fed rats during the last 15 days. Increased levels of renal total cholesterol, triglycerides and phospholipids, along with altered serum biochemical parameters of tissue injury indices and elevated activities of renal marker enzymes (lactate dehydrogenase and alkaline phosphatase) were noted in HCD fed rats. Elevated lipid peroxidation levels coupled with decreased antioxidant status (enzymatic and non enzymatic antioxidants) were observed in hypercholesterolemic rats, which indicate the onset of oxidative changes in the renal tissue. Renal lysosomal acid hydrolase activities (ACP, beta-Glu, beta-Gal, NAG and Cat-D) and acute phase proteins like C-Reactive protein and fibrinogen were significantly increased in HCD fed rats, which further indicates the heightening of inflammation. In addition, histopathological findings also confirmed the renal damage in hypercholesterolemic condition. Lupeol and lupeol linoleate effectively reverted the above abnormalities and was comparable with that of the control. These observations highlight the protective effect of lupeol and its ester derivative in ameliorating the renal injury associated with hypercholesterolemia.  相似文献   

19.
The effects of one-time ethanol intoxication on ascorbic acid and lipid metabolism and on drug-metabolizing enzymes in liver of rats were investigated. Male Donryu rats that had been fed semi-purified feed were given 5 g/kg ethanol solution (25%, w/v) via a stomach tube and killed 16 h after intubation. The amount of ascorbic acid excreted in the urine after ethanol administration increased, but renal and adrenal concentrations of ascorbic acid decreased. The serum levels of total cholesterol, high-density-lipoprotein cholesterol, triglycerides, phospholipids, and non-esterified fatty acids were elevated in rats given ethanol, but hepatic level of total lipids, cholesterol, triglycerides, phospholipids were not. The hepatic concentrations of cytochrome P-450 and cytochrome b5 did not increase, but this large dose of ethanol increased the activities of aminopyrine N-demethylase and cytochrome c reductase.

These results indicated that the single dose of ethanol affected the ascorbic acid and lipid metabolism of rats, and induced drug-metabolizing enzymes in their liver.  相似文献   

20.
Gut regulatory peptides bombesin (BBS) and neurotensin (NT) exert a wide spectrum of biological actions on gastrointestinal tissues and we have previously shown that they improve intestinal barrier function and oxidative stress in experimentally jaundiced rats. In the present study, we explored their potential action on liver histology and oxidative status in bile duct ligated rats. Seventy male Wistar rats were randomly divided into five groups: controls, sham operated, bile duct ligated (BDL), BDL+BBS (10 μg/kg, s.c. ×3), BDL+NT (300 μg/kg, i.p.). At the end of the experiment, on day 10, serum total bilirubin and alanine aminotransferase (ALT) levels were determined and endotoxin was measured in portal and aortic blood. Liver tissue samples were examined histologically for evaluation of the ratio of portal tracts presenting changes of obstructive cholangiopathy and neutrophils' number in portal tracts. In addition, hepatic oxidative status was estimated on liver homogenates by measurements of lipid peroxidation (malondialdehyde), protein oxidation (protein carbonyl groups) and thiol redox state [reduced glutathione (GSH), oxidized glutathione (GSSG), total non-protein mixed disulfides (NPSSR) and protein thiols (PSH)]. Administration of BBS or NT significantly reduced portal and aortic endotoxaemia observed in obstructive jaundice. Both agents significantly ameliorated liver injury, as demonstrated by improvement of obstructive cholangiopathy and reduction of ALT. This effect was accompanied by prevention of lipid peroxidation, protein oxidation and decrease of the oxidized forms GSSG and NPSSR. Moreover, neutrophil accumulation in portal tracts was significantly decreased. In conclusion, this study shows that gut regulatory peptides BBS and NT reduce cholestatic liver injury, exerting protective effects on portal tract architecture, neutrophil infiltration and hepatic oxidative stress in bile duct ligated rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号