首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ghrelin, an acyl-peptide gastric hormone and an endogenous ligand for growth hormone secretagogue (GHS) receptor 1a (GHS-R 1a) exerts multiple functions. It has been reported that synthetic GHS-hexarelin reduces injury of cerebral cortex and hippocampus after brain hypoxia-ischemia in neonatal rats. However, the effect of ghrelin in tolerance of the brain tissues to cerebral ischemia/reperfusion (I/R) injury has not been studied. The aim of the present study was to examine whether ghrelin have potential protective effect on hippocampal neurons of rats against I/R injury. I/R injury was induced by a modified four-vessel occlusion model. Ghrelin was administered intraperitoneally after the insult. Histological damage of the neurons was determined with hematoxylin-eosin (H&E) staining and assay of the neuronal apoptosis was performed by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL). The results showed that I/R decreased the number of surviving neurons and induced apoptosis of the neurons in CA1 area of the hippocampus in rats. In contrast, administration of ghrelin significantly increased the number of surviving neurons and reduced the number of TUNEL-positive apoptotic neurons in the equivalent areas after I/R. In conclusion, the present data provide evidence for the first time that ghrelin can exert a neuroprotective role in vivo in the tolerance of hippocampal neurons to I/R injury, and that the mechanism underlying this effect involves an anti-apoptotic property of ghrelin.  相似文献   

2.
目的:探讨姜黄素对自发性高血压大鼠(SHR)脑缺血/再灌注后认知功能及海马神经元损伤和调解活化正常T细胞表达和分泌的趋化因子(RANTES)表达的影响。方法:雄性Wistar-Kyoto大鼠(WKY)和SHR,随机分为5组:假手术组(W-Sham、S-Sham)、缺血/再灌注组(W-I/R、S-I/R)和姜黄素组(S-Cur),各组按再灌注时间分为3h、12 h、1 d、3 d、7 d 5个亚组(n=6)。采用四血管阻断法制备全脑缺血/再灌注模型,HE染色观察海马CA1区神经细胞形态,Nissl染色计数海马CA1区平均锥体细胞密度,ELISA法检测海马RANTES表达,于再灌注后7 d观察行为学。结果:与假手术组大鼠比较,缺血/再灌注组大鼠学习和记忆能力下降,海马CA1区神经元损伤加重,海马RANTES蛋白表达上调(P〈0.05);与W-I/R大鼠比较,S-I/R大鼠学习和记忆能力下降,海马CA1区神经元损伤加重,海马RANTES蛋白表达上调(P〈0.05);姜黄素组大鼠学习和记忆能力明显改善,海马CA1区神经元损伤减轻,海马RANTES蛋白表达下调(P〈0.05)。结论:缺血/再灌注更易导致SHR海马神经元损伤。姜黄素减轻SHR脑缺血/再灌注海马神经元损伤,其机制可能与抑制RANTES蛋白的表达有关。  相似文献   

3.
Ischemia-induced brain damage leads to apoptosis like delayed neuronal death in selectively vulnerable regions, which could further result in irreversible damages. Previous studies have demonstrated that neurons in the CA1 area of hippocampus are particularly sensitive to ischemic damage. Atorvastatin (ATV) has been reported to attenuate cognitive deficits after stroke, but precise mechanism for neuroprotection remains unknown. Therefore, the aims of this study were to investigate the neuroprotective mechanisms of ATV against ischemic brain injury induced by cerebral ischemia reperfusion. In this study, four-vessel occlusion model was established in rats with cerebral ischemia. Rats were divided into five groups: sham group, I/R group, I/R+ATV group, I/R+ATV+LY, and I/R+SP600125 group. Cresyl violet staining was carried out to examine the neuronal death of hippocampal CA1 region. Immunoblotting was used to detect the expression of the related proteins. Results showed that ATV significantly protected hippocampal CA1 pyramidal neurons against cerebral I/R. ATV could increase the phosphorylation of protein kinase B (Akt1) and nNOS, diminished the phosphorylation of JNK3 and c-Jun, and further inhibited the activation of caspase-3. Whereas, all of the aforementioned effects of ATV were reversed by LY294002 (an inhibitor of Akt1). Furthermore, pretreatment with SP600125 (an inhibitor of JNK) diminished the phosphorylation of JNK3 and c-Jun, and further inhibited the activation of caspase-3 after cerebral I/R. Taken together, our results implied that Akt-mediated phosphorylation of nNOS is involved in the neuroprotection of ATV against ischemic brain injury via suppressing JNK3 signaling pathway that provide a new experimental foundation for stroke therapy.  相似文献   

4.
Zong XM  Zeng YM  Xu T  Lü JN 《生理学报》2003,55(5):565-570
实验应用开阔法、组织病理学方法、原位末端标记(in situ terminal deoxynucleotidyl transferase-metliated de-oxy-UTP mick end labeling,TUNEL)法及免疫组织化学等方法,探讨多巴胺D1、D2受体激动剂和拮抗剂对沙土鼠前脑缺血/再灌注损伤海马CA1区神经元凋亡及凋亡相关基因bcl-2、bax表达的影响。结果显示:前脑缺血5min可引起沙土鼠探索活动增加;再灌注3d,海马CA1区约95%的锥体细胞凋亡;再灌注7d,海马CA1区仅残存约2%—7%的存活锥体细胞;前脑缺血5min可抑制bcl-2的表达并诱导bax表达增高;预先应用D2受体激动剂培高利特可减轻缺血后沙土鼠行为学异常、抑制海马CA1区锥体细胞凋亡、提高锥体细胞存活数、显著诱导bcl-2的表达并抑制bax的表达。预先应用SKF38393、SCH23390及螺哌隆对以上结果无明显影响。实验结果提示,培高利特具有确切的脑保护作用,诱导bcl-2并抑制bax的表达可能是其脑保护作用机制之一。  相似文献   

5.
Although Butylphthalide (BP) has protective effects that reduce ischemia-induced brain damage and neuronal cell death, little is known about the precise mechanisms occurring during cerebral ischemia/reperfusion (I/R). Therefore, the aim of this study was to investigate the neuroprotective mechanisms of BP against ischemic brain injury induced by cerebral I/R through inhibition of the c-Jun N-terminal kinase (JNK)–Caspase3 signaling pathway. BP in distilled non-genetically modified Soybean oil was administered intragastrically three times a day at a dosage of 15 mg/(kg day) beginning at 20 min after I/R in Sprague–Dawley rats. Immunohistochemical staining and Western blotting were performed to examine the expression of related proteins, and TUNEL-staining was used to detect the percentage of neuronal apoptosis in the hippocampal CA1 region. The results showed that BP could significantly protect neurons against cerebral I/R-induced damage. Furthermore, the expression of p-JNK, p-Bcl2, p–c-Jun, FasL, and cleaved-caspase3 was also decreased in the rats treated with BP. In summary, our results imply that BP could remarkably improve the survival of CA1 pyramidal neurons in I/R-induced brain injury and inhibit the JNK–Caspase3 signaling pathway.  相似文献   

6.
The expression and new functions of reproductive hormones in organs beyond hypothalamus-pituitary-gonad axis have been reported. So far, there is no report about the protective effects of GnRH analogue to hippocampal neurons suffering from ischemia–reperfusion injury. Middle cerebral artery occlusion model together with TUNEL staining were made in vivo and oxygen-glucose deprivation model together with double staining of Annexin V/PI with flow cytometer were made in vitro to observe the anti-apoptotic effects of GnRH analogue to hippocampal neurons after ischemia–reperfusion injury. The results found that the number of TUNEL positive pyramidal neurons in CA1 region in GnRH analogue experiment group was less than that in control group in vivo; the percentage of apoptotic neurons in GnRH analogue experiment group was less than that in control group in vitro. These findings suggested that pretreatment with certain concentration of GnRH analogue could attenuate apoptosis of hippocampal neurons. GnRH analogue has the protective effects to neurons.  相似文献   

7.
目的:探究双侧海马CA1区立体定向注射anti-GDNF抗体对匹鲁卡品诱导的大鼠癫痫模型的影响。方法:选择成年雄性SD大鼠60只,并随机分为3组,即假手术组(sham组,n=20)、癫痫模型组(model组,n=20)和GDNF抑制剂组(anti-GDNF组,n=20)。使用氯化锂-匹鲁卡品腹腔注射诱导癫痫模型,sham组只给予氯化锂,anti-GDNF组在造模前2 h给予大鼠双侧海马CA1区立体定向注射anti-GDNF抗体。在造模后1、3、7 d观察大鼠癫痫的发作频率,7 d后采用脑电图监测(EEG)测定脑电波的变化情况,通过免疫组化方法测定海马CA1区域神经元数量变化(Neu N表达水平),造模后1 d时使用western blot方法测定海马CA1区GDNF、RET和P53蛋白的表达。结果:Model组大鼠棘-慢波数量明显高于Sham组,anti-GDNF组以上指标较model组显著减少(P0.05);Model组海马CA1区神经元大量凋亡,但anti-GDNF组凋亡较model组显著减少(P0.05)。与Sham组比较,在癫痫发作后1 d,model组的GDNF、RET表达水平上调,P53表达水平下降(P0.05),而anti-GDNF组大鼠海马CA1区GDNF、RET表达较model组明显下调,P53表达水平显著上降(P0.05)。结论:双侧海马CA1区立体定向注射anti-GDNF抗体能够减少癫痫发作,并对海马神经元起到保护作用,可能与其抑制GDNF/RET/P53信号通路有关。  相似文献   

8.
Transient global ischemia (which closely resembles clinical situations such as cardiac arrest, near drowning or severe systemic hypotension during surgical procedures), often induces delayed neuronal death in the brain, especially in the hippocampal CA1 region. The mechanism of ischemia/reperfusion (I/R) injury is not fully understood. In this study, we have shown that the P2X7 receptor antagonist, BBG, reduced delayed neuronal death in the hippocampal CA1 region after I/R injury; P2X7 receptor expression levels increased before delayed neuronal death after I/R injury; inhibition of the P2X7 receptor reduced I/R-induced microglial microvesicle-like components, IL-1β expression, P38 phosphorylation, and glial activation in hippocampal CA1 region after I/R injury. These results indicate that antagonism of the P2X7 receptor and signaling pathways of microglial MV shedding, such as src-protein tyrosine kinase, P38 MAP kinase and A-SMase, might be a promising therapeutic strategy for clinical treatment of transient global cerebral I/R injury.  相似文献   

9.
The maintenance of intracellular pH is important in neuronal function. Na+/HCO3 cotransporter (NBC), a bicarbonate-dependent acid–base transport protein, may contribute to cellular acid–base homeostasis in pathophysiological processes. We examined the alterations of NBC immunoreactivity and its protein levels in the hippocampal CA1 region after transient cerebral ischemia in gerbils. In the sham-operated group, moderate NBC immunoreactivity was detected in CA1 pyramidal neurons, and, 12 h after I/R, the immunoreactivity in the pyramidal neurons was markedly increased over controls. Three days after I/R, NBC immunoreactivity nearly disappeared in the CA1 pyramidal neurons. However, NBC immunoreactivity was detected in the non-pyramidal neurons of the ischemic CA1 region at 3 days after I/R. From double immunofluorescence study with glial markers, NBC immunoreactivity was detected in astrocytes, not in microglia, at 4 days after I/R. NBC protein level in the CA1 region was significantly increased at 12 h post-ischemia and significantly decreased at 2 days post-ischemia. Thereafter, NBC protein level was again increased and returned to the level of the sham-operated group at 4 days post-ischemia. On the other hand, treatment with 4,4′-diisothiocyanatostilbene-2,2′-disulfonate (DIDS), an inorganic anion exchanger blocker including Cl-bicarbonate exchanger, protected CA1 pyramidal neurons from I/R injury at 4 days post-ischemia. These results indicate that changes in NBC expressions may play an important role in neuronal damage and astrocytosis induced by transient cerebral ischemia.  相似文献   

10.
The hippocampal CA1 region is sensitive to hypoxic and ischemic injury but can be protected by ischemic preconditioning (IPC). However, the mechanism through which IPC protects hippocampal CA1 neurons is still under investigation. Additionally, the role of autophagy in determining the fate of hippocampal neurons is unclear. Here, we examined whether IPC induced autophagy to alleviate hippocampal CA1 neuronal death in vitro and in vivo with oxygen glucose deprivation (OGD) and bilateral carotid artery occlusion (BCCAO) models. Survival of hippocampal neurons increased from 51.5% ± 6.3% in the non-IPC group (55 min of OGD) to 77.3% ± 7.9% in the IPC group (15 min of OGD, followed by 55 min of OGD 24 h later). The number of hippocampal CA1 layer neurons increased from 182 ± 26 cells/mm2 in the non-IPC group (20 min of BCCAO) to 278 ± 55 cells/mm2 in the IPC group (1 min × 3 BCCAO, followed by 20 min of BCCAO 24 h later). Akt phosphorylation and microtubule-associated protein light chain 3 (LC3)-II/LC3-I expression were increased in the preconditioning group. Moreover, the protective effects of IPC were abolished only by inhibiting the activity of autophagy, but not by blocking the activation of Akt in vitro. Using in vivo experiments, we found that LC3 expression was upregulated, accompanied by an increase in neuronal survival in hippocampal CA1 neurons in the preconditioning group. The neuroprotective effects of IPC on hippocampal CA1 neurons were completely inhibited by treatment with 3-MA. In contrast, hippocampal CA3 neurons did not show changes in autophagic activity or beneficial effects of IPC. These data suggested that IPC may attenuate ischemic injury in hippocampal CA1 neurons through induction of Akt-independent autophagy.  相似文献   

11.
Innate immune system is very important to modulate the host defense against a large variety of pathogens. Toll-like receptors (TLRs) play a key role in controlling innate immune response. Among TLRs, TLR4 is a specific receptor for lipopolysaccharide and associated with the release of pro-inflammatory cytokines. In the present study, we investigated ischemia-related changes of TLR4 immunoreactivity and its protein level, and nuclear factor κB (NF-κB) p65 immunoreactivity regarding inflammatory responses in the hippocampal CA1 region after 5 min of transient cerebral ischemia to identify the correlation between transient ischemia and inflammation. In the sham-operated group, TLR4 immunoreactivity was easily detected in pyramidal neurons of the hippocampal CA1 region (CA1). TLR4 immunoreactivity in pyramidal neurons was distinctively decreased after ischemia/reperfusion (I/R); instead, based on double immunofluorescence study, TLR4 immunoreactivity was expressed in non-pyramidal neurons and astrocytes from 2 days postischemia. In addition, TLR4 protein level was lowest at 1 day postischemia and highest 4 days after I/R. On the other hand, NF-κB p65 immunoreactivity was not detected in the CA1 of the sham-operated group, and NF-κB p65 immunoreactivity was not observed until 1 day after I/R. However, NF-κB p65 immunoreactivity began to be expressed in astrocytes at 2 days postischemia, and the immunoreactivity was strong 4 days postischemia. Our results indicate that TLR4 and NF-κB p65 immunoreactivity are changed in CA1 pyramidal neurons and newly expressed in astrocytes, not in microglia, in the CA1 region after transient cerebral ischemia.  相似文献   

12.
Reactive oxygen species (ROS) have been implicated in the pathogenesis of cerebral injury after ischemia-reperfusion (I/R). Fish n-3 essential fatty acids (EFA), contain eicosapentaenoic acids (EPA) and docosahexoenoic acids (DHA), exhibit antioxidant properties. DHA is an important component of brain membrane phospholipids and is necessary for the continuity of neuronal functions. EPA prevents platelet aggregation and inhibits the conversion of arachidonic acid into thromboxane A(2) and prostaglandins. They have been suggested to be protective agents against neurological and neuropsychiatric disorders. In this study, the neuroprotective effects of fish n-3 EFA on oxidant-antioxidant systems and number of apoptotic neurons of the hippocampal formation (HF) subjected to cerebral I/R injury was investigated in Sprague-Dawley rats. Six rats were used as control (Group I). Cerebral ischemia was produced by occlusion of both the common carotid arteries combined with hypotension for 45 min, followed by reperfusion for 30 min, in rats either on a standard diet (Group II) or a standard diet plus fish n-3 EFA (Marincap((R)), 0.4 g/kg/day, by gavage) for 14 days (Group III). At the end of procedures, the rats were sacrificed and their brains were removed immediately. The levels of malonedialdehyde (MDA) and nitric oxide (NO) and activities of superoxide dismutase (SOD) and catalase (CAT) were measured in left HF. In addition, the number of apoptotic neurons was counted by terminal transferase dUTP nick end labelling (TUNEL) assay in histological samples of the right HF. We found that SOD activities and MDA levels increased in Group III rats compared with Group II rats. On the other hand, CAT activities and NO levels were found to be decreased in Group III rats compared with Group II rats. Additionally, the number of apoptotic neurons was lower in Group III in comparison with Group II rats. The present findings suggest that fish n-3 EFA could decrease the oxidative status and apoptotic changes in ischemic rat hippocampal formation. Dietary supplementation of n-3 EFA may be beneficial to preserve or ameliorate ischemic cerebral vascular disease.  相似文献   

13.
Peroxisome proliferator-activated receptor-γ (PPAR-γ) has recently emerged as potential therapeutic agents for cerebral ischemia-reperfusion (I/R) injury because of anti-neuronal apoptotic actions. However, whether PPAR-γ activation mediates neuronal autophagy in such conditions remains unclear. Therefore, in this study, we investigated the role of PPAR-γ agonist 15-PGJ2 on neuronal autophagy induced by I/R. The expression of autophagic-related protein in ischemic cortex such as LC3-II, Beclin 1, cathepsin-B and LAMP1 increased significantly after cerebral I/R injury. Furthermore, increased punctate LC3 labeling and cathepsin-B staining occurred in neurons. Treatment with PPAR-γ agonist 15d-PGJ2 decreased not only autophagic-related protein expression in ischemic cortex, but also immunoreactivity of LC3 and cathepsin-B in neurons. Autophagic inhibitor 3-methyladenine (3-MA) decreased LC3-II levels, reduced the infarct volume, and mimicked some protective effect of 15d-PGJ2 against cerebral I/R injury. These results indicate that PPAR-γ agonist 15d-PGJ2 exerts neuroprotection by inhibiting neuronal autophagy after cerebral I/R injury. Although the molecular mechanisms underlying PPAR-γ agonist in mediating neuronal autophagy remain to be determined, neuronal autophagy may be a new target for PPAR-γ agonist treatment in cerebral I/R injury.  相似文献   

14.
Mild hypothermia (MH) is thought to be one of the most effective therapeutic methods to treat hypoxic-ischemic encephalopathy (HIE) after cardiac arrest (CA). However, its precise mechanisms remain unclear. In this research, hippocampal neurons were cultured and treated with mild hypothermia and Ac-DEVD-CHO after oxygen-glucose deprivation (OGD). The activity of caspase-3 was detected, in order to find the precise concentration of Ac-DEVD-CHO with the same protective role in OGD injury as MH treatment. Western blot and immunofluorescence staining were conducted to analyze the effects of MH and Ac-DEVD-CHO on the expressions of caspase-3, caspase-8, and PARP. The neuronal morphology was observed with an optical microscope. The lactic acid dehydrogenase (LDH) release rate, neuronal viability, and apoptotic rate were also detected. We found that MH (32 °C) and Ac-DEVD-CHO (5.96 μMol/L) had equal effects on blocking the activation of caspase-3 and the OGD-induced cleavage of PARP, but neither had any effect on the activation of caspase-8, which goes on to activate caspase-3 in the apoptotic pathway. Meanwhile, both MH and Ac-DEVD-CHO had similar effects in protecting cell morphology, reducing LDH release, and inhibiting OGD-induced apoptosis in neurons. They also similarly improved neuronal viability after OGD. In conclusion, caspase-3 serves as a key intervention point of the key modulation site or regulatory region in MH treatment that protects neuronal apoptosis against OGD injury. Inhibiting the expression of caspase-3 had a protective effect against OGD injury in MH treatment, and caspase-3 activation could be applied to evaluate the neuroprotective effectiveness of MH on HIE.  相似文献   

15.
本研究的目的在于探讨产前应激对子代大鼠海马CA3神经元高电压激活(HVA)钙通道、延迟整流钾电流(delayedrectifierpotassiumcurrents,IKD)的影响。产前应激(prenatalstress,PNS)组孕鼠孕晚期给予束缚应激,应用全细胞膜片钳技术进行研究。结果显示产前应激增加了子代海马CA3神经元HVA钙通道峰电流幅值,对照组和产前应激组子代CA3神经元平均最大HVA钙电流峰值分别为-576.52±7.03pA和-702.05±6.82pA(P<0.01)。同时未改变其电导-电压关系,也未改变延迟整流钾通道电流-电压关系、电导-电压关系。结果提示,在胎儿发育的关键时期,给予母体产前应激,引起子代海马神经元HVA钙电流增加,其机制一方面PNS导致皮质酮升高,从而可能增加HVA钙通道mRNA表达;另一方面PNS所致反应性氧化产物(reactiveoxygenspecies,ROS)增多,后者可能通过磷酸化HVACa2 通道亚单位,从而提高HVA钙电流幅值。  相似文献   

16.
Glucose is a main energy source for normal brain functions. Glucokinase (GK) plays an important role in glucose metabolism as a glucose sensor, and GK activity is modulated by glucokinase regulatory protein (GKRP). In this study, we examined the changes of GK and GKRP immunoreactivities in the gerbil hippocampus after 5 min of transient global cerebral ischemia. In the sham-operated-group, GK and GKRP immunoreactivities were easily detected in the pyramidal neurons of the stratum pyramidale of the hippocampus. GK and GKRP immunoreactivities in the pyramidal neurons were distinctively decreased in the hippocampal CA1 region (CA), not CA2/3, 3 days after ischemia–reperfusion (I–R). Five days after I–R, GK and GKRP immunoreactivities were hardly detected in the CA1, not CA2/3, pyramidal neurons; however, at this point in time, GK and GKRP immunoreactivities were newly expressed in astrocytes, not microglia, in the ischemic CA1. In brief, GK and GKRP immunoreactivities are changed in pyramidal neurons and newly expressed in astrocytes in the ischemic CA1 after transient cerebral ischemia. These indicate that changes of GK and GKRP expression may be related to the ischemia-induced neuronal damage/death.  相似文献   

17.
目的:探讨自发性高血压大鼠(SHR)脑缺血/再灌注损伤海马神经元凋亡c-Jun氨基末端激酶(JNK)核通路的变化特点,以及姜黄素对其保护作用可能机制。方法:雄性Wistar-Kyoto大鼠(WKY)和SHR,随机分为5组:WKY假手术组(W-Sham组)、缺血/再灌注组(W-I/R组)和SHR假手术组(S-Sham组)、缺血/再灌注组(S-I/R组)、姜黄素100mg/kg预处理组(S-Cur组),上述5个实验组按再灌注时间又分为再灌注2h、6h、1d、3d、7d5个亚组(n=6)。采用四动脉结扎法制备脑缺血/再灌注模型,以TUNEL法检测海马CA1区的细胞凋亡,免疫组化法分析海马CA1区c-jun、c-fos的动态变化。结果:S-Sham组大鼠海马CA1区TUNEL细胞数量和c-jun、c-fos表达高于W-Sham组(P0.05),S-I/R组TUNEL细胞数量和c-jun、c-fos表达高于S-Sham组及W-I/R组(P0.05);S-Cur组TUNEL细胞数量和c-jun、c-fos表达较S-I/R组明显降低(P0.05)。结论:缺血/再灌注更易导致SHR海马神经元凋亡。姜黄素可抑制SHR脑缺血/再灌注损伤海马神经元凋亡,其作用机制可能与抑制c-jun、c-fos蛋白的表达有关。  相似文献   

18.
Four sphingolipid activator proteins (i.e., saposins A–D) are synthesized from a single precursor protein, prosaposin (PS), which exerts exogenous neurotrophic effects in vivo and in vitro. Kainic acid (KA) injection in rodents is a good model in which to study neurotrophic factor elevation; PS and its mRNA are increased in neurons and the choroid plexus in this animal model. An 18-mer peptide (LSELIINNATEELLIKGL; PS18) derived from the PS neurotrophic region prevents neuronal damage after ischemia, and PS18 is a potent candidate molecule for use in alleviating ischemia-induced learning disabilities and neuronal loss. KA is a glutamate analog that stimulates excitatory neurotransmitter release and induces ischemia-like neuronal degeneration; it has been used to define mechanisms involved in neurodegeneration and neuroprotection. In the present study, we demonstrate that a subcutaneous injection of 0.2 and 2.0 mg/kg PS18 significantly improved behavioral deficits of Wistar rats (n = 6 per group), and enhanced the survival of hippocampal and cortical neurons against neurotoxicity induced by 12 mg/kg KA compared with control animals. PS18 significantly protected hippocampal synapses against KA-induced destruction. To evaluate the extent of PS18- and KA-induced effects in these hippocampal regions, we performed histological evaluations using semithin sections stained with toluidine blue, as well as ordinal sections stained with hematoxylin and eosin. We revealed a distinctive feature of KA-induced brain injury, which reportedly mimics ischemia, but affects a much wider area than ischemia-induced injury: KA induced neuronal degeneration not only in the CA1 region, where neurons degenerate following ischemia, but also in the CA2, CA3, and CA4 hippocampal regions.  相似文献   

19.
李花  刘旺华  周小青  何倩  于跃武  唐群 《生物磁学》2009,(12):2218-2221
目的:探讨活血通络方通过线粒体途径抗大鼠脑缺血再灌注后神经元凋亡机制。方法:将大鼠随机分成假手术组、模型组、活血通络组,大脑中动脉栓塞再通法建立脑缺血再灌注模型。大鼠脑缺血再灌注6、12、24和48h不同时间点进行神经功能评分,并用原位末端标记法检测凋亡神经元,用免疫组化法检测Cyto-C、caspase-9、caspase-3阳性细胞数。结果:活血通络方对再灌注各时间点神经功能评分有不同程度的改善,能减少神经元凋亡指数和Cyto—C、caspase一9、caspase-3的表达(P〈0.01-4).05)。结论:Cyto-C、caspase.9和caspase-3在脑缺血再灌注损伤中发挥重要作用,活血通络方能减轻缺血再灌注所致神经元凋亡,保护神经功能,其机理与抑制细胞凋亡线粒体通路有关。  相似文献   

20.
Daphnetin, a coumarin derivative extracted from Daphne odora var., was reported to possess a neuroprotective effect. Recently, it has been demonstrated that daphnetin attenuates ischemia/reperfusion (I/R) injury. However, the role of daphnetin in cerebral I/R injury and the potential mechanism have not been fully understood. The present study aimed to explore the regulatory roles of daphnetin on oxygen-glucose deprivation/reoxygenation (OGD/R)–induced cell injury in a model of hippocampal neurons. Our results demonstrated that daphnetin improved cell viability and reduced the lactate dehydrogenase leakage in OGD/R–stimulated hippocampal neurons. In addition, daphnetin inhibited oxidative stress and cell apoptosis in hippocampal neurons after OGD/R stimulation. Furthermore, daphnetin significantly enhanced the nuclear translocation of the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression in hippocampal neurons exposed to OGD/R. Knockdown of Nrf2 blocked the protective effect of daphnetin on OGD/R–induced hippocampal neurons. In conclusion, these findings demonstrated that daphnetin attenuated oxidative stress and neuronal apoptosis after OGD/R injury through the activation of the Nrf2/HO-1 signaling pathway in hippocampal neurons. Thus, daphnetin may be a novel therapeutic agent for cerebral I/R injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号