首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study investigated whether thermal sweating may relieve elevated concentrations of serum uric acid or urea. Concentrations of uric acid and urea were measured in the sweat of sixteen male volunteers, who were treated with external heat after one hour of intense physical exercise. The same analytes were also measured in their urine and serum samples. Furthermore, creatinine and some electrolytes were determined in these specimens. The results show that the concentration of uric acid in the sweat is 24.5 micromol/L, which is only 6.3% of that in serum. The concentration of urea in the sweat is 22.2 mmol/L, which is 3.6 times that in serum. The results indicate that sweat uric acid concentration is quite minimal, and the estimated total uric acid excretion per day in normal physiological range is insignificant. However, the level of sweat urea was found at a much higher concentration than the serum level. No correlation could be established between the level of uric acid in sweat and in serum. There was also no correlation between the level of urea in sweat and that in serum. These results suggest it would not be effective to relieve the elevated serum uric acid concentration by thermal sweating when the renal excretion of uric acid is partly compromised. Nevertheless, the potential of urea excretion via profuse sweating is apparent particularly when the kidneys are damaged or their function is impaired. These findings also suggest that persons who take vigorous exercise or are exposed to hot environments should be well advised to drink adequate fluids since heavy sweating excretes only minimal uric acid, accompanied by significant diminution of urinary output and diminished urinary excretions of uric acid, which may induce elevated levels of serum uric acid.  相似文献   

2.
P Lijnen  P Hespel  E Vanden Eynde  A Amery 《Enzyme》1985,33(3):134-142
Nine normal young male students were studied during 2 days of relative rest, during 2 days of physical training and again during the succeeding 2 days of relative rest. 24-hour urine collections showed that the creatinine, creatine, uric acid, urea, calcium and magnesium excretion were similar during the resting and exercise days. The 24-hour urinary excretion of sodium and potassium was decreased during the exercise days, while the aldosterone excretion was increased. The hemoglobin concentration, hematocrit and red cell counts were decreased 14, as well as 42 h after exercise. The serum uric acid, creatine phosphokinase-MM (skeletal muscles) subfraction, glutamic oxalacetic transaminase and myoglobin levels were increased 14 h after exercise, but returned to baseline 42 h after this type of exercise. The mechanisms of these alterations were discussed and the data show that one should take into account previous exercise when interpreting the results of certain of these tests.  相似文献   

3.
Purine loss after repeated sprint bouts in humans.   总被引:6,自引:0,他引:6  
The influence of the number of sprint bouts on purine loss was examined in nine men (age 24.8 +/- 1.6 yr, weight 76 +/- 3.9 kg, peak O(2) consumption 3.87 +/- 0.16 l/min) who performed either one (B1), four (B4), or eight (B8) 10-s sprints on a cycle ergometer, 1 wk apart, in a randomized order. Forearm venous plasma inosine, hypoxanthine (Hx), and uric acid concentrations were measured at rest and during 120 min of recovery. Urinary inosine, Hx, and uric acid excretion were also measured before and 24 h after exercise. During the first 120 min of recovery, plasma inosine and Hx concentrations, and urinary Hx excretion rate, were progressively higher (P < 0.05) with an increasing number of sprint bouts. Plasma uric acid concentration was higher (P < 0.05) in B8 compared with B1 and B4 after 45, 60, and 120 min of recovery. Total urinary excretion of purines (inosine + Hx + uric acid) was higher (P < 0. 05) at 2 h of recovery after B8 (537 +/- 59 micromol) compared with the other trials (B1: 270 +/- 76; B4: 327 +/- 59 micromol). These results indicate that the loss of purine from the body was enhanced by increasing the number of intermittent 10-s sprint bouts.  相似文献   

4.
Changes in zinc (Zn) availability in muscle tissue that influence muscle performance in vitro have been observed. The effect of exercise of plasma Zn levels and urinary excretion of Zn was observed in sever untrained volunteers following brief intensive exercise and in seven trained volunteers after more prolonged road-running exercise. With brief exercise, plasma Zn decreased predominantly in the more loosely bound albumin fraction. Prolonged exercise resulted in a greater plasma Zn decrease of 30%. Urinary Zn excretion increased transiently with minimal effect on daily losses. However, weight loss by sweating was significant, and sweat Zn losses were greater than those in the urine. Exercise resulted in changes in Zn metabolism that may influence performance.  相似文献   

5.
Sweating responses were examined in five horses during a standardized exercise test (SET) in hot conditions (32-34 degrees C, 45-55% relative humidity) during 8 wk of exercise training (5 days/wk) in moderate conditions (19-21 degrees C, 45-55% relative humidity). SETs consisting of 7 km at 50% maximal O(2) consumption, determined 1 wk before training day (TD) 0, were completed on a treadmill set at a 6 degrees incline on TD0, 14, 28, 42, and 56. Mean maximal O(2) consumption, measured 2 days before each SET, increased 19% [TD0 to 42: 135 +/- 5 (SE) to 161 +/- 4 ml. kg(-1). min(-1)]. Peak sweating rate (SR) during exercise increased on TD14, 28, 42, and 56 compared with TD0, whereas SRs and sweat losses in recovery decreased by TD28. By TD56, end-exercise rectal and pulmonary artery temperature decreased by 0.9 +/- 0.1 and 1.2 +/- 0.1 degrees C, respectively, and mean change in body mass during the SET decreased by 23% (TD0: 10.1 +/- 0.9; TD56: 7.7 +/- 0.3 kg). Sweat Na(+) concentration during exercise decreased, whereas sweat K(+) concentration increased, and values for Cl(-) concentration in sweat were unchanged. Moderate-intensity training in cool conditions resulted in a 1.6-fold increase in sweating sensitivity evident by 4 wk and a 0.7 +/- 0.1 degrees C decrease in sweating threshold after 8 wk during exercise in hot, dry conditions. Altered sweating responses contributed to improved heat dissipation during exercise and a lower end-exercise core temperature. Despite higher SRs for a given core temperature during exercise, decreases in recovery SRs result in an overall reduction in sweat fluid losses but no change in total sweat ion losses after training.  相似文献   

6.
This study examined sweating responses in six exercise-trained horses during 21 consecutive days (4 h/day) of exposure to, and daily exercise in, hot humid conditions (32-34 degrees C, 80-85% relative humidity). On days 0, 3, 7, 14, and 21, horses completed a standardized exercise test on a treadmill (6 degrees incline) at a speed eliciting 50% of maximal O(2) uptake until a pulmonary artery temperature of 41.5 degrees C was attained. Sweat was collected at rest, every 5 min during exercise, and during 1 h of standing recovery for measurement of ion composition (Na(+), K(+), and Cl(-)) and sweating rate (SR). There was no change in the mean time to reach a pulmonary artery temperature of 41.5 degrees C (range 19.09 +/- 1.41 min on day 0 to 20.92 +/- 1.98 min on day 3). Peak SR during exercise (ml. m(-2). min(-1)) increased on day 7 (57.5 +/- 5. 0) but was not different on day 21 (48.0 +/- 4.7) compared with day 0 (52.0 +/- 3.4). Heat acclimation resulted in a 17% decline in SR during recovery and decreases in body mass and sweat fluid losses during the standardized exercise test of 25 and 22%, respectively, by day 21. By day 21, there was also a 10% decrease in mean sweat Na(+) concentration for a given SR during exercise and recovery; this contributed to an approximately 26% decrease in calculated total sweat ion losses (3,112 +/- 114 mmol on day 0 vs. 2,295 +/- 107 mmol on day 21). By day 21, there was a decrease in sweating threshold ( approximately 1 degrees C) but no change in sweat sensitivity. It is concluded that horses responded to 21 days of acclimation to, and exercise in, hot humid conditions with a reduction in sweat ion losses attributed to decreases in sweat Na(+) concentration and SR during recovery.  相似文献   

7.
Bed rest (BR) deconditioning causes excessive increase of exercise core body tempera-ture, while aerobic training improves exercise thermoregulation. The study was designed to determine whether 3 days of 6 degrees head-down bed rest (HDBR) affects body temperature and sweating dynamics during exercise and, if so, whether endurance training before HDBR modifies these responses. Twelve healthy men (20.7+/-0.9 yrs, VO2max: 46+/-4 ml x kg(-1) x min(-1) ) underwent HDBR twice: before and after 6 weeks of endurance training. Before and after HDBR, the subjects performed 45 min sitting cycle exercise at the same workload equal to 60% of VO2max determined before training. During exercise the VO2, HR, tympanic (Ttymp) and skin (Tsk) temperatures were recorded; sweating dynamics was assayed from a ventilated capsule on chest. Training increased VO2max by 12.1% (p<0.001). Resting Ttymp increased only after first HDBR (by 0.22 +/- 0.08 degrees C, p<0.05), while exercise equilibrium levels of Ttymp were increased (p<0.05) by 0.21 +/- 0.07 and 0.26 +/- 0.08 degrees C after first and second HDBR, respectively. Exercise mean Tsk tended to be lower after both HDBR periods. Total sweat loss and time-course of sweating responses were similar in all exercise tests. The sweating threshold related to Ttymp was elevated (p<0.05) only after first HDBR. In conclusion: six-week training regimen prevents HDBR-induced elevation of core temperature (Ttymp) at rest but not during ex-ercise. The post-HDBR increases of Ttymp without changes in sweating rate and the tendency for lower Tsk suggest an early (<3d) influence of BR on skin blood flow.  相似文献   

8.
1. The purpose of this study was to examine the effects of insulin on urinary excretion and retention of the intravenously infused glutamine amide-15N in chickens. 2. Insulin pretreatment reduced urinary total 15N excretion (P less than 0.05) and enhanced 15N retention in chicken body (P less than 0.05), but it did not affect non protein-15N retained in the liver and blood. 3. Insulin decreased the incorporation of the infused glutamine amide-15N into urinary uric acid as well as the excretion of other N-derived urinary uric acid (P less than 0.05), which resulted in a significant decrease in total urinary uric acid (P less than 0.05). 4. There was no effect of insulin on urinary appearance of the infused glutamine amide-15N in the form of ammonia.  相似文献   

9.
This investigation was designed to determine the relationship between the levels of plasma aldosterone and eccrine sweat gland sodium excretion following exercise and heat acclimation. Ten subjects exercised at 45% of their maximal O2 uptake in a hot (40 degrees C), moderately humid (45% relative humidity) environment for 2 h/day on ten consecutive days. Acclimation was verified by significant reductions in exercise heart rate, rectal temperature, and heat storage, as well as significant elevation of resting plasma volume (12%, P less than 0.05) and exercise sweat rate on day 10 compared with day 1 of acclimation. During exercise, the concentration and total content of sodium in sweat as well as plasma aldosterone were significantly decreased from day 1 to day 10. The ratio of sweat sodium reabsorbed to plasma aldosterone concentration was significantly increased from day 1 to day 10 after both 1 and 2 h of exercise. These data indicate that plasma aldosterone concentrations decrease following heat acclimation; and eccrine gland responsiveness to aldosterone, as represented by sweat sodium reabsorption, may be augumented through exercise and heat acclimation.  相似文献   

10.
Most of the daily dietary iodine intake (approximately 90 %) will be excreted in the urine; measurement of urinary iodine excretion is thus routinely used as an index of dietary iodine intake. However, urinary excretion is not the only means of iodine loss. Subjects such as athletes or those participating in vigorous exercise can lose a considerable amount of iodine in sweat, depending on environmental factors such as temperature and humidity. In areas of lower to moderate dietary iodine intake, loss in sweat can equal that in urine. Although electrolyte loss in sweat is well-recognized and replacement strategies are adopted, there is less recognition of potential iodine loss. Crude calculations reveal that if sweat iodide losses are not replaced, dietary stores could be depleted in an athlete undergoing a regular training regime. The significance of these losses could be increased in areas where dietary iodine intake is lower in the summer months. Although there is little doubt that excessive sweating can induce a relative iodine deficiency state, there is no case as yet for iodine supplementation in those that take vigorous exercise. However, sustained iodine loss may have implications for thyroid status and possibly consequences for athletic performance.  相似文献   

11.
We tested the hypothesis that local sweat rates would not display a systematic postadaptation redistribution toward the limbs after humid heat acclimation. Eleven nonadapted males were acclimated over 3 wk (16 exposures), cycling 90 min/day, 6 days/wk (40 degrees C, 60% relative humidity), using the controlled-hyperthermia acclimation technique, in which work rate was modified to achieve and maintain a target core temperature (38.5 degrees C). Local sudomotor adaptation (forehead, chest, scapula, forearm, thigh) and onset thresholds were studied during constant work intensity heat stress tests (39.8 degrees C, 59.2% relative humidity) conducted on days 1, 8, and 22 of acclimation. The mean body temperature (Tb) at which sweating commenced (threshold) was reduced on days 8 and 22 (P < 0.05), and these displacements paralleled the resting thermoneutral Tb shift, such that the Tb change to elicit sweating remained constant from days 1 to 22. Whole body sweat rate increased significantly from 0.87 +/- 0.06 l/h on day 1 to 1.09 +/- 0.08 and 1.16 +/- 0.11 l/h on days 8 and 22, respectively. However, not all skin regions exhibited equivalent relative sweat rate elevations from day 1 to day 22. The relative increase in forearm sweat rate (117 +/- 31%) exceeded that at the forehead (47 +/- 18%; P < 0.05) and thigh (42 +/- 16%; P < 0.05), while the chest sweat rate elevation (106 +/- 29%) also exceeded the thigh (P < 0.05). Two unique postacclimation observations arose from this project. First, reduced sweat thresholds appeared to be primarily related to a lower resting Tb, and more dependent on Tb change. Second, our data did not support the hypothesis of a generalized and preferential trunk-to-limb sweat redistribution after heat acclimation.  相似文献   

12.
This investigation tested the hypothesis that cholinergic sweat function of individuals with multiple sclerosis (MS) (MS-Con; n = 10) is diminished relative to matched healthy control subjects (Con; n = 10). In addition, cholinergic sweat function was determined before and after 15 wk of aerobic training in a subgroup of individuals with MS (MS-Ex; n = 7). Cholinergic sweating responses were assessed via pilocarpine iontophoresis on ventral forearm skin. A collection disk placed over the stimulated area collected sweat for 15 min. Sweat rate (SR) was calculated by dividing sweat collector volume by collection area and time. Iodine-treated paper was applied to the stimulated area to measure number of activated sweat glands (ASG). Sweat gland output (SGO) was calculated by dividing SR by density of glands under the collector. Sweat gland function was determined in MS-Ex to test the hypothesis that exercise training would increase sweating responses. No differences in ASG were observed between MS-Con and Con. SR and SGO in MS-Con [0.18 mg.cm(-2).min(-1) (SD 0.08); 1.74 microg.gland(-1).min(-1) (SD 0.79), respectively] were significantly lower (P < or = 0.05) than in Con [0.27 mg.cm(-2).min(-1) (SD 0.10); 2.43 microg.gland(-1).min(-1) (SD 0.69)]. Aerobic exercise training significantly (P < or = 0.05) increased peak aerobic capacity in MS-Ex [1.86 (SD 0.75) vs. 2.10 (SD 0.67) l/min] with no changes in ASG, SR, and SGO. Sweat gland function in individuals with MS is impaired relative to healthy controls. Fifteen weeks of aerobic training did not increase stimulated sweating responses in individuals with MS. Diminished peripheral sweating responses may be a consequence of impairments in autonomic control of sudomotor function.  相似文献   

13.
Thermoregulatory responses during heat acclimation were compared between nine young (mean age 21.2 yr) and nine middle-aged men (mean age 46.4 yr) who were matched (P greater than 0.05) for body weight, surface area, surface area-to-weight ratio, percent body fat, and maximal aerobic power. After evaluation in a comfortable environment (22 degrees C, 50% relative humidity), the men were heat acclimated by treadmill walking (1.56 m/s, 5% grade) for two 50-min exercise bouts separated by 10 min of rest for 10 consecutive days in a hot dry (49 degrees C ambient temperature, 20% relative humidity) environment. During the first day of heat exposure performance time was 27 min longer (P less than 0.05) for the middle-aged men, whereas final rectal and skin temperatures and heart rate were lower, and final total body sweat loss was higher (P less than 0.05) compared with the young men. These thermoregulatory advantages for the middle-aged men persisted for the first few days of exercise-heat acclimation (P less than 0.05). After acclimation no thermoregulatory or performance time differences were observed between groups (P greater than 0.05). Sweating sensitivity, esophageal temperature at sweating onset, and the sweating onset time did not differ (P greater than 0.05) between groups either pre- or postacclimatization. Plasma osmolality and sodium concentration were slightly lower for the young men both pre- and postacclimatization; however, both groups had a similar percent change in plasma volume from rest to exercise during these tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The effect of clinically used equipotent doses of nonselective (beta 1/beta 2; propranolol) and selective (beta 1; atenolol) beta-adrenoceptor blockers on thermoregulation was studied during prolonged exercise in the heat. Oral propranolol (160 mg/day), atenolol (100 mg/day) or matching placebo were taken for 6 days each by 11 healthy young adult caucasian males. Subjects participated in 2 h of block-stepping at a work rate of 54 W in an environmental chamber with a temperature of 33.2 +/- 0.3 degree C dry bulb and 31.7 /+- 0.3 degree C wet bulb, 2 h after ingestion of the final dose of each drug. Both active agents produced similar marked (P less than 0.001) increases in subjective perception of effort, the mechanism of which was not immediately evident from changes in serum electrolytes, blood glucose, blood lactate, or ventilatory parameters. Propranolol did, however, cause a greater rise in serum K+ than placebo (P less than 0.02) and atenolol (P = NS) after exercise. Although rectal and mean skin temperatures were insignificantly altered by beta-adrenoceptor blockade, an increased total sweat production was noted with propranolol (P less than 0.01 vs. placebo) and to a lesser degree atenolol (P = NS vs. placebo) therapy. Analysis of the time course of sweat production showed the propranolol-mediated enhancement of sweating to ensue largely during the initial hour of block-stepping and to be transient in nature. The scientific and clinical implications of this observation will be dependent upon the precise underlying mechanism, a factor not identified by the present study.  相似文献   

15.
The influence of hyperhydration on thermoregulatory function was tested in 8 male volunteers. The subjects performed cycle exercise in the upright position at 52% Vo2max for 45 min in a thermoneutral (Ta = 23 degrees C) environment. The day after the control exercise the subjects were hyperhydrated with tap water (35 ml X kg-1 of body weight) and then performed the same physical exercise as before. Total body weight loss was lower after hyperhydration (329 +/- 85 g) than during the control exercise (442 +/- 132 g), p less than 0.05. The decrease in weight loss after hyperhydration was probably due to a decrease in dripped sweat (58 +/- 64 and 157 +/- 101 g, p less than 0.05). With hyperhydration delay in onset of sweating was reduced from 5.8 +/- 3.2 to 3.7 +/- 2.0 min (p less than 0.05), and rectal temperature increased less (0.80 +/- 0.20 and 0.60 +/- 0.10 degrees C, p less than 0.01). The efficiency of sweating was higher in hyperhydrated (81.4%) than in euhydrated subjects (57.1%), p less than 0.01. It is concluded that hyperhydration influences thermoregulatory function in exercising men by shortening the delay in onset of sweating and by decreasing the quantity of dripped sweat. As a result, the increases in body temperature in hyperhydrated exercising men are lower than in normally hydrated individuals.  相似文献   

16.
To evaluate the role of beta-adrenergic receptors in the control of human sweating, we studied six subjects during 40 min of cycle-ergometer exercise (60% maximal O2 consumption) at 22 degrees C 2 h after oral administration of placebo or nonselective beta-blockade (BB, 80 mg propranolol). Internal temperature (esophageal temperature, Tes), mean skin temperature (Tsk), local chest temperature (Tch), and local chest sweat rate (msw) were continuously recorded. The control of sweating was best described by the slope of the linear relationship between msw and Tes and the threshold Tes for the onset of sweating. The slope of the msw-Tes relationship decreased 27% (P less than 0.01), from 1.80 to 1.30 mg X cm-2 X min-1 X degree C-1 during BB. The Tes threshold for sweating (36.8 degrees C) was not altered as the result of BB. These data suggest that BB modified the control of sweating via some peripheral interaction. Since Tsk was significantly (P less than 0.05) reduced during BB exercise, from a control value of 32.8 to 32.2 degrees C, we evaluated the influence of the reduction in local skin temperature (Tsk) in the altered control of sweating. Reductions in Tch accounted for only 45% of the decrease in the slope of the msw-Tes relationship during BB. Since evaporative heat loss requirement during exercise with BB, as estimated from the energy balance equation, was also reduced 18%, compared with control exercise, we concluded that during BB the reduction in sweating at any Tes is the consequence of both a decrease in local Tsk and a direct effect on sweat gland.  相似文献   

17.
The objective of the present study was to evaluate a comprehensive set of urinary biomarkers for oxidative damage to lipids, proteins and DNA, in man. Eighteen moderately trained males (mean age 24.6+/-0.7) exercised 60min at 70% of maximal O2 uptake on a cycle ergometer. Urine fractions for 12 h were collected 1 day before, and for 3 consecutive days after exercise. As biomarkers of lipid peroxidation, 8 aldehydes (i.e. propanal, butanal, pentanal, hexanal, heptanal, octanal, nonanal and malondialdehyde-MDA)and acetone were analyzed in urines by gas chromatography with electron capture detection (GC-ECD). As a biomarker of protein oxidation, o,o'-dityrosine was analyzed in urine samples by a recently developed isotope dilution HPLC-atmospheric pressure chemical ionization (APCI)-tandem-mass spectrometry (HPLC-APCI-MS/MS) methodology. As a biomarker of oxidative DNA damage, urinary excretion of 8-hydroxy-2'-deoxyguanosine (8-OHdG) was measured by an ELISA method. On the day of exercise, significant increases were observed in urinary excretions of acetone (p < 0.025, n = 18) and butanal (p < 0.01, n = 18) in the 12h daytime fractions compared to the daytime fraction before exercise. The urinary acetone excretion was also significantly (p < 0.05) increased on the 1st day after exercise. Octanal and nonanal were increased in the daytime urine fraction on the 2nd day after exercise. However, these increases were of borderline significance (p = 0.09 and p = 0.07, respectively). Significantly elevated urinary o,o'-dityrosine amounts were observed in the daytime fraction on the day of exercise (p < 0.025) and on the 1st day after exercise (p = 0.07) compared to the before exercise daytime fraction. Excretion of urinary 8-OHdG was statistically significantly increased in the daytime fractions on the day of exercise (p = 0.07) and on the 1st day after exercise (p < 0.025) compared to before exercise daytime fraction. Increases in urinary excretions of acetone, propanal, pentanal, MDA and 8-OHdG significantly correlated with training status (hours of exercise/week) of the volunteers, while o,o'-dityrosine did not. To our knowledge, the present study is the first to evaluate a multi-parameter non-invasive biomarker set for damage to three main cellular targets of ROS. It shows that 1 h of exercise may already induce oxidative damage in moderately trained individuals and that the chosen urinary biomarkers are sensitive enough to monitor such damage.  相似文献   

18.
Chromium excretion of eight trained and five sedentary men was determined on rest days and after exercise to exhaustion at 90% of maximum O2 consumption (VO2max) to determine if degree of physical fitness affects urinary Cr losses. Subjects were fed a constant daily diet containing approximately 9 micrograms Cr/1,000 kcal. VO2max of the trained runners was in the good or above range based on their age and that of the sedentary subjects was average or below. While consuming the control diet, basal urinary Cr excretion of subjects who exercise regularly was significantly lower than that of the sedentary control subjects, 0.09 +/- 0.01 and 0.21 +/- 0.03 microgram/day (mean +/- SE), respectively. When subjects consumed self-chosen diets, basal urinary Cr excretion of the trained subjects was also significantly lower than that of the untrained subjects. Daily urinary Cr excretion of trained subjects was significantly higher on the day of a single exercise bout at 90% VO2max compared with nonexercise days, 0.12 +/- 0.02 and 0.09 +/- 0.01 microgram/day, respectively. Urinary Cr excretion of sedentary subjects was not altered after controlled exercise. These data demonstrate that basal urinary Cr excretion and excretion in response to exercise are related to VO2max and therefore degree of physical fitness.  相似文献   

19.
Uric acid is considered as an antioxidant in the blood. Despite its proposed protective properties, elevated plasma uric acid has been associated with hypertension in a variety of disorders. The purpose of this study was to investigate the relationship between the increase of arterial blood pressure and the changes in serum uric acid, measured during the gradual development of experimental hypertension in deoxycorticosterone (DOCA)-salt-treated rats. Blood pressure was monitored by tail-cuff method, urinary and plasma uric acid was measured by autoanalyzer during the induction of hypertension in 1-, 2-, 3- and 4-week DOCA-salt-treated Sprague-Dawley rats. Vitamin E (200 mg/kg/day/gavage) was co-administered with DOCA-salt for 4 weeks. From the first week of DOCA-salt treatment, rats exhibited marked increases in blood pressure. DOCA-salt treatment also resulted in a significant increase in serum uric acid and a significant decrease in urinary uric acid at the end of the first week. These changes in serum and urinary uric acid remained until the 4th week of DOCA-salt treatment but blood pressure continued to increase throughout the study. Vitamin E treatment increased urinary excretion of uric acid and decreased blood pressure and serum uric acid in DOCA-salt-treated rats. These data suggest that enhanced serum uric acid may be a contributing factor to the onset of hypertension in DOCA-salt-treated rats. A uricosuric effect is suggested for vitamin E in the treatment of hypertension.  相似文献   

20.
Nine normal young male students were studied during 2 days of relative rest, during 2 days of physical training and again during the succeeding 2 days of relative rest. Twenty-four hour urine collections showed that sodium and potassium excretion were lower during the exercise days, while urinary aldosterone excretion was increased. No differences in the 24-h urinary excretion of creatinine, calcium, and magnesium were found between the resting and exercise days. Hemoglobin concentration, hematocrit and red cell counts were decreased at 14 h and 42 h after exercise; these findings together with the increased serum bilirubin concentration could result from hemolysis. Plasma renin activity, angiotensin II and aldosterone concentration were increased 14 h after exercise but returned to baseline 42 h after exercise. Our data shows that one should take into account previous exercise when interpreting results of certain of these tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号