首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For a long time nucleic acid-based approaches directed towards controlling the propagation of Hepatitis C Virus (HCV) have been considered to possess high potential. Towards this end, ribozymes (i.e. RNA enzymes) that specifically recognize and subsequently catalyze the cleavage of their RNA substrate present an attractive molecular tool. Here, the unique properties of a new generation of ribozymes are taken advantage of in order to develop an efficient and durable ribozyme-based technology with which to target HCV (+) RNA strands. These ribozymes resulted from the coupling of a specific on/off adaptor (SOFA) to the ribozyme domain derived from the Hepatitis Delta Virus (HDV). The former switches cleavage activity “on” solely in the presence of the desired RNA substrate, while the latter was the first catalytic RNA reported to function naturally in human cells, specifically in hepatocytes. In order to maximize the chances for success, a step-by-step approach was used for both the design and the selection of the ribozymes. This approach included the use of both bioinformatics and biochemical methods for the identification of the sites possessing the greatest potential for targeting, and the subsequent in vitro testing of the cleavage activities of the corresponding SOFA-HDV ribozymes. These efforts led to a significant improvement in the ribozymes'' designs. The ability of the resulting SOFA-HDV ribozymes to inhibit HCV replication was further examined using a luciferase-based replicon. Although some of the ribozymes exhibited high levels of cleavage activity in vitro, none appears to be a potential long term inhibitor in cellulo. Analysis of recent discoveries in the cellular biology of HCV might explain this failure, as well as provide some ideas on the potential limits of using nucleic acid-based drugs to control the propagation of HCV. Finally, the above conclusions received support from experiments performed using a collection of SOFA-HDV ribozymes directed against HCV (−) strands.  相似文献   

2.
小型核酶的结构和催化机理   总被引:5,自引:1,他引:4  
自然界存在的小型核酶主要有锤头型核酶、发夹型核酶、肝炎δ病毒(HDV)核酶和VS核酶.锤头型核酶由3个短螺旋和1个广义保守的连接序列组成;发夹型核酶的催化中心由两个肩并肩挨着的区域构成;HDV核酶折叠成包含五个螺旋臂(P1~P4)的双结结构;VS核酶由五个螺旋结构组成,这些螺旋结构通过两个连接域连接起来.小型核酶的催化机理与其分子结构密切相关.金属离子或特定碱基都可作为催化反应的关键成分.锤头型核酶的催化必须有金属离子(尤其是二价金属离子)参与,而发夹型核酶则完全不需要金属离子.基因组HDV核酶进行催化时要有金属离子和特定碱基互相配合.  相似文献   

3.
Because the substrate binding site (P1) of HDV ribozyme consists of only seven nucleotides, cleavage of undesired RNA is likely to occur when applied for a specific long RNA target such as mRNA. To overcome this problem, we designed modified trans-acting HDV ribozymes with an extra substrate-binding site (P5) in addition to the original binding site (P1). By inserting an additional seven base-pair stem (P5 stem) into the J1/2 single-stranded region of the ribozyme core system and partial destabilization of the P2 or P4 stem, we succeeded in preparation of new HDV ribozymes that can cleave the target RNA depending on the formation of P5 stem. Moreover, the ribozyme with a six-nucleotide P1 site was able to distinguish the substrate RNA with a complete match from that with a single mismatch in the P1 region. These results suggest that the HDV ribozyme system is useful for the application in vivo.  相似文献   

4.

Because the substrate binding site (P1) of HDV ribozyme consists of only seven nucleotides, cleavage of undesired RNA is likely to occur when applied for a specific long RNA target such as mRNA. To overcome this problem, we designed modified trans-acting HDV ribozymes with an extra substrate-binding site (P5) in addition to the original binding site (P1). By inserting an additional seven base-pair stem (P5 stem) into the J1/2 single-stranded region of the ribozyme core system and partial destabilization of the P2 or P4 stem, we succeeded in preparation of new HDV ribozymes that can cleave the target RNA depending on the formation of P5 stem. Moreover, the ribozyme with a six-nucleotide P1 site was able to distinguish the substrate RNA with a complete match from that with a single mismatch in the P1 region. These results suggest that the HDV ribozyme system is useful for the application in vivo.  相似文献   

5.
K S Jeng  A Daniel    M M Lai 《Journal of virology》1996,70(4):2403-2410
The ribozymes of hepatitis delta virus (HDV) have so far been studied primarily in vitro. Several structural models for HDV ribozymes based on truncated HDV RNA fragments, which are different from the hammerhead or the hairpin/paperclip ribozyme model proposed for plant viroid or virusoid RNAs, have been proposed. Whether these structures actually exist in vivo and whether ribozymes actually function in the HDV replication cycle have not been demonstrated. We have now developed an in vivo ribozyme self-cleavage assay capable of detecting self-cleavage of dimer or trimer HDV RNA in vivo. By site-directed mutagenesis and compensatory mutations to disrupt and restore potential base pairing in the ribozyme domain of the full-length HDV RNA according to the various structural models, a close correlation between the detected in vivo and the predicted in vitro ribozyme activities of various mutant RNAs was demonstrated. These results suggest that the proposed in vitro ribozyme structure likely exists and functions during the HDV replication cycle in vivo. Furthermore, the pseudoknot model most likely represents the structure responsible for the ribozyme activity in vivo. All of the mutants that had lost the ribozyme activity could not replicate, indicating that the ribozyme activities are indeed required for HDV RNA replication. However, some of the compensatory mutants which have restored both the cleavage and ligation activities could not replicate, suggesting that the ribozyme domains are also involved in other unidentified functions or in the formation of an alternative structure that is required for HDV RNA replication. This study thus established that the ribozyme has important biological functions in the HDV life cycle.  相似文献   

6.
The HDV ribozyme is an RNA enzyme from the human pathogenic hepatitis delta virus (HDV) that has recently also been identified in the human genome. It folds into a compact, nested double-pseudoknot. We examined here the functional relevance of the capping loop L4 and the helical crossover J1/2, which tightly interlace the two helical stacks of the ribozyme. Peripheral structural elements such as these are present in cis-acting, but not trans-acting ribozymes, which may explain the order-of-magnitude decrease in cleavage activity observed in trans-acting ribozymes with promise in gene therapy applications. Comparison of a systematic set of cis- and trans-acting HDV ribozymes shows that the absence of either L4 or J1/2 significantly and independently impacts catalytic activity. Using terbium(III) footprinting and affinity studies, as well as distance measurements based on time-resolved fluorescence resonance energy transfer, we find that J1/2 is most important for conferring structural properties similar to those of the cis-acting ribozyme. Our results are consistent with a model in which removal of either a helical crossover or surprisingly a capping loop induces greater dynamics and expansion of the catalytic core at long range, impacting local and global folding, as well as catalytic function.  相似文献   

7.
8.
Ribozymes are RNA molecules with enzymatic activity that can cleave target RNA molecules in a sequence specific manner. To date, various types of ribozyme have been constructed to cleave other RNAs and such trans-acting ribozymes include hammerhead, hairpin and HDV ribozymes. External guide sequence (EGS) can also induce the suppression of a gene-expression by taking advantage of cellular RNase P. Here we compared the activities of various functional RNA cleavers both in vitro and in vivo. The first purpose of this comparison was intended to determine the best ribozyme motif with the highest activity in cells. The second purpose is to know the correlation between the activities of ribozymes in vitro and in vivo. Our results indicated that the intrinsic cleavage activity of ribozymes is not the sole determinant that is responsible for the activity of a ribozyme in cultured cells.  相似文献   

9.
Analysis of the self-cleavage of ribozymes derived from the genomic RNA of Hepatitis delta virus (HDV) has revealed that certain co-transcribed vector sequences significantly affect the activity of the ribozyme. Specifically, the t1/2 of self-cleavage for a 135 nucleotide HDV RNA varied, at 42 degrees C, from 5 min to 88 min, depending on the vector-derived sequences flanking the 5' end of the ribozyme. Further analysis suggested that this phenomenon was most likely due to the interaction of vector-derived sequences with a 16 nucleotide region found at the 3' end of the ribozyme. These findings have implications for studies of ribozymes transcribed from cDNA templates, and may provide information regarding the catalytic structure of the HDV ribozyme.  相似文献   

10.
11.
The identification of proficient target sites within long RNA molecules, as well as the most efficient ribozymes for each, is a major concern for the use of ribozymes as gene suppressers. In vitro selection methods using combinatorial libraries are powerful tools for the rapid elucidation of interactions between macromolecules, and have been successfully used for different types of ribozyme study. This paper describes a new method for selecting effective target sites within long RNAs using a combinatorial library of self-cleaving hairpin ribozymes that includes all possible specificities. The method also allows the identification of the most appropriate ribozyme for each identified site. Searching for targets within the lacZ gene with this strategy yielded a clearly accessible site. Sequence analysis of ribozymes identified two variants as the most appropriate for this site. Both selected ribozymes showed significant inhibitory activity in the cell milieu.  相似文献   

12.
Golden BL 《Biochemistry》2011,50(44):9424-9433
The hepatitis delta virus (HDV) ribozyme and related RNAs are widely dispersed in nature. This RNA is a small nucleolytic ribozyme that self-cleaves to generate products with a 2',3'-cyclic phosphate and a free 5'-hydroxyl. Although small ribozymes are dependent on divalent metal ions under biologically relevant buffer conditions, they function in the absence of divalent metal ions at high ionic strengths. This characteristic suggests that a functional group within the covalent structure of small ribozymes is facilitating catalysis. Structural and mechanistic analyses have demonstrated that the HDV ribozyme active site contains a cytosine with a perturbed pK(a) that serves as a general acid to protonate the leaving group. The reaction of the HDV ribozyme in monovalent cations alone never approaches the velocity of the Mg(2+)-dependent reaction, and there is significant biochemical evidence that a Mg(2+) ion participates directly in catalysis. A recent crystal structure of the HDV ribozyme revealed that there is a metal binding pocket in the HDV ribozyme active site. Modeling of the cleavage site into the structure suggested that this metal ion can interact directly with the scissile phosphate and the nucleophile. In this manner, the Mg(2+) ion can serve as a Lewis acid, facilitating deprotonation of the nucleophile and stabilizing the conformation of the cleavage site for in-line attack of the nucleophile at the scissile phosphate. This catalytic strategy had previously been observed only in much larger ribozymes. Thus, in contrast to most large and small ribozymes, the HDV ribozyme uses two distinct catalytic strategies in its cleavage reaction.  相似文献   

13.
14.
Efficient ribozyme-mediated gene silencing requires the effective binding of a ribozyme to its specific target sequence. Stable stem-loop domains are key elements for efficiency of natural antisense RNAs. This work tests the possibility of using such naturally existing structural motifs for anchoring hairpin ribozymes when targeting long RNAs. Assays were performed with four catalytic antisense RNAs, based on the hairpin ribozyme (HP), that carried a stable stem-loop motif at their 3' end. Extensions consisted of one of the following motifs: the stem-loop II of the natural antisense RNA-CopA, its natural target in CopT, the TAR-RNA motif, or its complementary sequence alphaTAR. Interestingly, the presence of any of these antisense motifs resulted in an enhancement of catalytic performance against the ribozyme's 14-nucleotide-long target RNA (Swt). A series of artificial, long RNA substrates containing the Swt sequence and the natural TAR-RNA stem-loop were constructed and challenged with a catalytic antisense RNA carrying the TAR-complementary stem-loop. This cleaves each of these substrates significantly more efficiently than HP. The deletion of the TAR domain in the substrate, or its substitution by its complementary counterpart alphaTAR, abolishes the positive effect. These results suggest that the enhancement is owed to the interaction of both complementary stem-loop domains. Moreover, they demonstrate that the TAR domain can be used as an anchoring site to facilitate the access of hairpin ribozymes to their specific target sequences within TAR-containing RNAs.  相似文献   

15.
The crystal structure of a genomic hepatitis delta virus (HDV) ribozyme 3' cleavage product predicts the existence of a 2 bp duplex, P1.1, that had not been previously identified in the HDV ribozymes. P1.1 consists of two canonical C-G base pairs stacked beneath the G.U wobble pair at the cleavage site and would appear to pull together critical structural elements of the ribozyme. P1.1 is the second stem of a second pseudoknot in the ribozyme, making the overall fold of the ribozyme a nested double pseudoknot. Sequence comparison suggests the potential for P1.1 and a similar fold in the antigenomic ribozyme. In this study, the base pairing requirements of P1.1 for cleavage activity were tested in both the genomic and antigenomic HDV ribozymes by mutagenesis. In both sequences, cleavage activity was severely reduced when mismatches were introduced into P1.1, but restored when alternative base pairing combinations were incorporated. Thus, P1.1 is an essential structural element required for cleavage of both the genomic and antigenomic HDV ribozymes and the model for the antigenomic ribozyme secondary structure should also be modified to include P1.1.  相似文献   

16.
Subgenomic regions of hepatitis delta virus (HDV) RNA contains ribozyme whose activities are important to viral life cycles and depend on a unique pseudoknot structure. To explore the characters of HDV ribozyme, antibiotics of the aminoglycoside, which has been shown inhibiting self-splicing of group I intron and useful in elucidating its structure, were tested for their effect on HDV genomic ribozyme. Aminoglycosides, including tobramycin, netromycin, neomycin and gentamicin effectively inhibited HDV genomic ribozyme self-cleavage in vitro at a concentration comparable to that inhibiting group I intron self-splicing. The extent of inhibition depended upon the concentration of magnesium ion. Chemical modification mapping of HDV ribozyme RNA indicated that the susceptibility of nucleotide 703 to the modifying agent was enhanced in the presence of tobramycin, suggesting a conformational shift of HDV ribozyme, probably due to an interaction with the aminoglycoside. Finally, we examined the effect of aminoglycoside on HDV cleavage and replication in cell lines, however, none of the aminoglycoside effective in vitro exerted suppressive effects in vivo. Our results represented as an initial effort in utilizing aminoglycoside to probe the structure of HDV ribozyme and to compare its reaction mechanism with those of other related ribozymes.  相似文献   

17.
The ribozymes derived from Hepatitis delta virus (HDV) RNA appear unique in their sequence requirements for self-cleavage. While truncating the 1679 nucleotide antigenomic HDV RNA, we have characterized the cleavage requirements of a number of ribozymes of intermediate length. Two of these, containing 186 and 106 HDV nucleotides respectively, cleaved to completion in the presence of 18 M formamide. The 186 nucleotide ribozyme also cleaved to completion in 10 M urea. Removal of an additional 10 nts from the 3' terminus of the 106 nt ribozyme resulted in a loss of the ability to cleave in high concentrations of the denaturants. The interaction of nucleotides near the cleavage site with a sequence within this 10 base region may confer unusual stability on these ribozymes.  相似文献   

18.
Delta ribozyme has the ability to cleave in transan mRNA.   总被引:3,自引:0,他引:3       下载免费PDF全文
We report here the first demonstration of the cleavage of an mRNA in trans by delta ribozyme derived from the antigenomic version of the human hepatitis delta virus (HDV). We characterized potential delta ribozyme cleavage sites within HDV mRNA sequence (i.e. C/UGN6), using oligonucleotide binding shift assays and ribonuclease H hydrolysis. Ribozymes were synthesized based on the structural data and then tested for their ability to cleave the mRNA. Of the nine ribozymes examined, three specifically cleaved a derivative HDV mRNA. All three active ribozymes gave consistent indications that they cleaved single-stranded regions. Kinetic characterization of the ability of ribozymes to cleave both the full-length mRNA and either wild-type or mutant small model substrate suggests: (i) delta ribozyme has turnovers, that is to say, several mRNA molecules can be successively cleaved by one ribozyme molecule; and (ii) the substrate specificity of delta ribozyme cleavage is not restricted to C/UGN6. Specifically, substrates with a higher guanosine residue content upstream of the cleavage site (i.e. positions -4 to -2) were always cleaved more efficiently than wild-type substrate. This work shows that delta ribozyme constitutes a potential catalytic RNA for further gene-inactivation therapy.  相似文献   

19.
Isolating the core functional elements of an RNA is normally performed during the characterization of a new RNA in order to simplify further biochemical analysis. The removal of extraneous sequence is challenging and can lead to biases that result from the incomplete sampling of deletion variants. An impartial solution to this problem is to construct a library containing a large number of deletion constructs and to select functional RNA isolates that are at least as efficient as their full-length progenitors. Here, we use nonhomologous recombination and selection to isolate the catalytic core of a pyrimidine nucleotide synthase ribozyme. A variable-length pool of approximately 10(8) recombinant molecules that included deletions, inversions, and translocations of a 271-nucleotide-long ribozyme isolate was constructed by digesting and randomly religating its DNA genome. In vitro selection for functional ribozymes was then performed in a size-dependent and a size-independent manner. The final pools had nearly equivalent catalytic rates even though their length distributions were completely different, indicating that a diverse range of deletion constructs were functionally active. Four short sequence islands, requiring as little as 81 nt of sequence, were found within all of the truncated ribozymes and could be folded into a secondary structure consisting of three helix-loops. Our findings suggest that nonhomologous recombination is a highly efficient way to isolate a ribozyme's core motif and could prove to be a useful method for evolving new ribozyme functions from pre-existing sequences in a manner that may have played an important role early in evolution.  相似文献   

20.
A circular trans-acting hepatitis delta virus ribozyme.   总被引:8,自引:3,他引:5       下载免费PDF全文
A circular trans-acting ribozyme designed to adopt the motif of the hepatitis delta virus (HDV) trans-acting ribozyme was produced. The circular form was generated in vitro by splicing a modified group I intron precursor RNA in which the relative order of the 5' and 3' splice sites, flanking the single HDV-like ribozyme sequence-containing exon, is reversed. Trans-cleavage activity of the circular HDV-like ribozyme was comparable to linear permutations of HDV ribozymes containing the same core sequence, and was shown not to be due to linear contaminants in the circular ribozyme preparation. In nuclear and cytoplasmic extracts from HeLa cells, the circular ribozyme had enhanced resistance to nuclease degradation relative to a linear form of the ribozyme, suggesting that circularization may be a viable alternative to chemical modification as a means of stabilizing ribozymes against nuclease degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号