首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Pyridoxal 5'-phosphate is the active form of vitamin B(6) that acts as an essential, ubiquitous coenzyme in amino acid metabolism. In Escherichia coli, the pathway of the de novo biosynthesis of vitamin B(6) results in the formation of pyridoxine 5'-phosphate (PNP), which can be regarded as the first synthesized B(6) vitamer. PNP synthase (commonly referred to as PdxJ) is a homooctameric enzyme that catalyzes the final step in this pathway, a complex intramolecular condensation reaction between 1-deoxy-D-xylulose-5'-phosphate and 1-amino-acetone-3-phosphate. RESULTS: The crystal structure of E. coli PNP synthase was solved by single isomorphous replacement with anomalous scattering and refined at a resolution of 2.0 A. The monomer of PNP synthase consists of one compact domain that adopts the abundant TIM barrel fold. Intersubunit contacts are mediated by three additional helices, respective to the classical TIM barrel helices, generating a tetramer of symmetric dimers with 422 symmetry. In the shared active sites of the active dimers, Arg20 is directly involved in substrate binding of the partner monomer. Furthermore, the structure of PNP synthase with its physiological products, PNP and P(i), was determined at 2.3 A resolution, which provides insight into the dynamic action of the enzyme and allows us to identify amino acids critical for enzymatic function. CONCLUSION: The high-resolution structures of the free enzyme and the enzyme-product complex of E. coli PNP synthase suggest essentials of the enzymatic mechanism. The main catalytic features are active site closure upon substrate binding by rearrangement of one C-terminal loop of the TIM barrel, charge-charge stabilization of the protonated Schiff-base intermediate, the presence of two phosphate binding sites, and a water channel that penetrates the beta barrel and allows the release of water molecules in the closed state. All related PNP synthases are predicted to fold into a similar TIM barrel pattern and have comparable active site architecture. Thus, a common mechanism can be anticipated.  相似文献   

2.
In Neisseria meningitidis and related bacterial pathogens, sialic acids play critical roles in mammalian cell immunity evasion and are synthesized by a conserved enzymatic pathway that includes sialic acid synthase (NeuB, SiaC, or SynC). NeuB catalyzes the condensation of phosphoenolpyruvate (PEP) and N-acetylmannosamine, directly forming N-acetylneuraminic acid (or sialic acid). In this paper we report the development of a coupled assay to monitor NeuB reaction kinetics and an 18O-labeling study that demonstrates the synthase operates via a C-O bond cleavage mechanism. We also report the first structure of a sialic acid synthase, that of NeuB, revealing a unique domain-swapped homodimer architecture consisting of a (beta/alpha)8 barrel (TIM barrel)-type fold at the N-terminal end and a domain with high sequence identity and structural similarity to the ice binding type III antifreeze proteins at the C-terminal end of the enzyme. We have determined the structures of NeuB in the malate-bound form and with bound PEP and the substrate analog N-acetylmannosaminitol to 1.9 and 2.2 A resolution, respectively. Typical of other TIM barrel proteins, the active site of NeuB is located in a cavity at the C-terminal end of the barrel; however, the positioning of the swapped antifreeze-like domain from the adjacent monomer provides key residues for hydrogen bonding with substrates in the active site of NeuB, a structural feature that leads to distinct modes of substrate binding from other PEP-utilizing enzymes that lack an analogous antifreeze-like domain. Our observation of a direct interaction between a highly ordered manganese and the N-acetylmannosaminitol in the NeuB active site also suggests an essential role for the ion as an electrophilic catalyst that activates the N-acetylmannosamine carbonyl to the addition of PEP.  相似文献   

3.
4.
The manipulation of modular regulatory domains from allosteric enzymes represents a possible mechanism to engineer allostery into non-allosteric systems. Currently, there is insufficient understanding of the structure/function relationships in modular regulatory domains to rationally implement this methodology. The LeuA dimer regulatory domain represents a well-conserved, novel fold responsible for the regulation of two enzymes involved in branched chain amino acid biosynthesis, α-isopropylmalate synthase and citramalate synthase. The LeuA dimer regulatory domain is responsible for the feedback inhibition of these enzymes by their respective downstream products. Both enzymes display multidomain architecture with a conserved N-terminal TIM barrel catalytic domain and a C-terminal (βββα)2 LeuA dimer domain joined by a flexible linker region. Due to the similarity of three-dimensional structure and catalytic mechanism combined with low sequence similarity, we propose these enzymes can be classified as members of the LeuA dimer superfamily. Despite their similarity, members of the LeuA dimer superfamily display diversity in their allosteric mechanisms. In this review, structural aspects of the LeuA dimer superfamily are discussed followed by three examples highlighting the diversity of allosteric mechanisms in the LeuA dimer superfamily.  相似文献   

5.
There are many well-known examples of proteins with low sequence similarity, adopting the same structural fold. This aspect of sequence-structure relationship has been extensively studied both experimentally and theoretically, however with limited success. Most of the studies consider remote homology or "sequence conservation" as the basis for their understanding. Recently "interaction energy" based network formalism (Protein Energy Networks (PENs)) was developed to understand the determinants of protein structures. In this paper we have used these PENs to investigate the common non-covalent interactions and their collective features which stabilize the TIM barrel fold. We have also developed a method of aligning PENs in order to understand the spatial conservation of interactions in the fold. We have identified key common interactions responsible for the conservation of the TIM fold, despite high sequence dissimilarity. For instance, the central beta barrel of the TIM fold is stabilized by long-range high energy electrostatic interactions and low-energy contiguous vdW interactions in certain families. The other interfaces like the helix-sheet or the helix-helix seem to be devoid of any high energy conserved interactions. Conserved interactions in the loop regions around the catalytic site of the TIM fold have also been identified, pointing out their significance in both structural and functional evolution. Based on these investigations, we have developed a novel network based phylogenetic analysis for remote homologues, which can perform better than sequence based phylogeny. Such an analysis is more meaningful from both structural and functional evolutionary perspective. We believe that the information obtained through the "interaction conservation" viewpoint and the subsequently developed method of structure network alignment, can shed new light in the fields of fold organization and de novo computational protein design.  相似文献   

6.
New structural insights into lectin-type proteins of the immune system.   总被引:3,自引:0,他引:3  
New structural data have emerged for the ligand-binding sites of C-type lectin domains and C-type lectin-like domains of receptors of the immune system. These include binding sites for oligosaccharide or polypeptide ligands, or both oligosaccharide and polypeptide ligands. The structural basis for the binding of a lectin domain of the beta-trefoil family to different sulfooligosaccharide sequences has been revealed. Lectin activity has been documented for a beta/alpha TIM barrel fold that does not have the chitinase activity of the prototype enzyme with this fold.  相似文献   

7.
A new method to analyze the similarity between multiply aligned protein motifs (blocks) was developed. It identifies sets of consistently aligned blocks. These are found to be protein regions of similar function and structure that appear in different contexts. For example, the Rossmann fold ligand-binding region is found similar to TIM barrel and methylase regions, various protein families are predicted to have a TIM-barrel fold and the structural relation between the ClpP protease and crotonase folds is identified from their sequence. Besides identifying local structure features, sequence similarity across short sequence-regions (less than 20 amino acid regions) also predicts structure similarity of whole domains (folds) a few hundred amino acid residues long. Most of these relations could not be identified by other advanced sequence-to-sequence or sequence-to-multiple alignments comparisons. We describe the method (termed CYRCA), present examples of our findings, and discuss their implications.  相似文献   

8.
Imidazolonepropionase (EC 3.5.2.7) catalyzes the third step in the universal histidine degradation pathway, hydrolyzing the carbon-nitrogen bonds in 4-imidazolone-5-propionic acid to yield N-formimino-l-glutamic acid. Here we report the crystal structures of the Bacillus subtilis imidazolonepropionase and its complex at 2.0-A resolution with substrate analog imidazole-4-acetic acid sodium (I4AA). The structure of the native enzyme contains two domains, a TIM (triose-phosphate isomerase) barrel domain with two insertions and a small beta-sandwich domain. The TIM barrel domain is quite similar to the members of the alpha/beta barrel metallo-dependent hydrolase superfamily, especially to Escherichia coli cytosine deaminase. A metal ion was found in the central cavity of the TIM barrel and was tightly coordinated to residues His-80, His-82, His-249, Asp-324, and a water molecule. X-ray fluorescence scan analysis confirmed that the bound metal ion was a zinc ion. An acetate ion, 6 A away from the zinc ion, was also found in the potential active site. In the complex structure with I4AA, a substrate analog, I4AA replaced the acetate ion and contacted with Arg-89, Try-102, Tyr-152, His-185, and Glu-252, further defining and confirming the active site. The detailed structural studies allowed us to propose a zinc-activated nucleophilic attack mechanism for the hydrolysis reaction catalyzed by the enzyme.  相似文献   

9.
BACKGROUND: Methyltetrahydrofolate, corrinoid iron-sulfur protein methyltransferase (MeTr), catalyzes a key step in the Wood-Ljungdahl pathway of carbon dioxide fixation. It transfers the N5-methyl group from methyltetrahydrofolate (CH3-H4folate) to a cob(I)amide center in another protein, the corrinoid iron-sulfur protein. MeTr is a member of a family of proteins that includes methionine synthase and methanogenic enzymes that activate the methyl group of methyltetra-hydromethano(or -sarcino)pterin. We report the first structure of a protein in this family. RESULTS: We determined the crystal structure of MeTr from Clostridium thermoaceticum at 2.2 A resolution using multiwavelength anomalous diffraction methods. The overall architecture presents a new functional class of the versatile triose phosphate isomerase (TIM) barrel fold. The MeTr tertiary structure is surprisingly similar to the crystal structures of dihydropteroate synthetases despite sharing less than 20% sequence identity. This homology permitted the methyl-H4folate binding site to be modeled. The model suggests extensive conservation of the pterin ring binding residues in the polar active sites of the methyltransferases and dihydropteroate synthetases. The most significant structural difference between these enzymes is in a loop structure above the active site. It is quite open in MeTr, where it can be modeled as the cobalamin binding site. CONCLUSIONS: The MeTr structure consists of a TIM barrel that embeds methyl-H4folate and cobamide. All related methyltransferases are predicted to fold into a similar TIM barrel pattern and have a similar pterin and cobamide binding site. The observed structure is consistent with either a 'front' (N5) or 'back' (C8a) side protonation of CH3-H4folate, a key step that enhances the electrophilic character of the methyl group, activating it for nucleophilic attack by Co(I).  相似文献   

10.
Gaucher disease, the most common lysosomal storage disease, is caused by mutations in the gene that encodes acid-β-glucosidase (GlcCerase). Type 1 is characterized by hepatosplenomegaly, and types 2 and 3 by early or chronic onset of severe neurological symptoms. No clear correlation exists between the ~200 GlcCerase mutations and disease severity, although homozygosity for the common mutations N370S and L444P is associated with non- neuronopathic and neuronopathic disease, respectively. We report the X-ray structure of GlcCerase at 2.0 Å resolution. The catalytic domain consists of a (β/α)8 TIM barrel, as expected for a member of the glucosidase hydrolase A clan. The distance between the catalytic residues E235 and E340 is consistent with a catalytic mechanism of retention. N370 is located on the longest α-helix (helix 7), which has several other mutations of residues that point into the TIM barrel. Helix 7 is at the interface between the TIM barrel and a separate immunoglobulin-like domain on which L444 is located, suggesting an important regulatory or structural role for this non-catalytic domain. The structure provides the possibility of engineering improved GlcCerase for enzyme-replacement therapy, and for designing structure-based drugs aimed at restoring the activity of defective GlcCerase.  相似文献   

11.
The alpha subunit of tryptophan synthase (alphaTS) from S. typhimurium belongs to the triosephosphate isomerase (TIM) or the (beta/alpha)(8) barrel fold, one of the most common structures in biology. To test the conservation of the global fold in the isolated Escherichia coli homolog, we have obtained a majority of the backbone assignments for the 29-kD alphaTS by using standard heteronuclear multidimensional NMR methods on uniformly (15)N- and (15)N/(13)C-labeled protein and on protein selectively (15)N-labeled at key hydrophobic residues. The secondary structure mapped by chemical shift index, nuclear Overhauser enhancements (NOEs), and hydrogen-deuterium (H-D) exchange, and several abnormal chemical shifts are consistent with the conservation of the global TIM barrel fold of the isolated E. coli alphaTS. Because most of the amide protons that are slow to exchange with solvent correspond to the beta-sheet residues, the beta-barrel is likely to play an important role in stabilizing the previously detected folding intermediates for E. coli alphaTS. A similar combination of uniform and selective labeling can be extended to other TIM barrel proteins to obtain insight into the role of the motif in stabilizing what appear to be common partially folded forms.  相似文献   

12.
Murray KB  Taylor WR  Thornton JM 《Proteins》2004,57(2):365-380
We present a method called DAVROS to detect, localize, and validate repeating motifs in protein structure allowing for insertions and deletions. DAVROS uses the score matrix from a structural alignment program (SAP) to search for repeating motifs using an algorithm based on concepts from signal processing and the statistical properties of the alignments. The method was tested against a nonredundant Protein Data Bank, and each chain was assigned a score. For the top 50 chains ranked by score, 70% contain repeating motifs detected without error. These represent 14 types of fold covering alpha, beta, and alphabeta protein classes. A second data set comprising protein chains in different sequence families for triosephosphate isomerase (TIM) barrel, leucine-rich repeat (LRR), trefoil, and alpha-alpha barrel folds was used to assess the ability of DAVROS to detect all motifs within a specific fold. For the second test set, the percentage of motifs detected was highest for the LRR chains (88.7%) and least for the TIM barrels (60%). This variability results from the regularity of the LRR motif compared to the alphabeta units of the TIM barrel, which generally have many more indels. These reduce the strength of the repeat signal in the SAP matrix, making repeat detection more difficult.  相似文献   

13.
Comparative analysis of numerous protein structures that have become available in the past few years, combined with genome comparison, has yielded new insights into the evolution of enzymes and their functions. In addition to the well-known diversification of substrate specificities, enzymes with several widespread catalytic folds, particularly the TIM barrel, the RRM-like domain and the double-stranded beta-helix (cupin) domain, have been extensively explored in 'reaction space', resulting in the evolution of numerous, diverse catalytic activities supported by the same structural scaffold. Common protein folds differ widely in the diversity of catalyzed reactions. The biochemical plasticity of a fold seems to hinge on the presence of a generic, symmetrical substrate-binding pocket as opposed to highly specialized binding sites.  相似文献   

14.
TIM proteins of alpha/beta barrel fold from alpha/beta class as given in SCOP database were taken for dipole moment analysis. In all, 32 structures were analyzed for their dipole moment contributions. Representative structures from 20 super families in the alpha/beta fold, with different enzyme functions and 12 protein domains of TIM family in TIM super family were considered. The active sites of these proteins are located on the C-terminal side of the beta-strands. The molecules of same alpha/beta fold, but differing in their functionality also showed a common electrostatic field pattern along the barrel axis and had the dipole moment along the barrel axis and towards C-terminal end of the beta-strands. However, it is observed from our calculations that the dipole moment direction is possibly a consequence of the structural fold, with distribution of charges playing a modulatory role, and does not contribute to the location of active site. We show here that apart from the commonly held view as proposed by Hol et al [Hol W G L, van Duijnen PT and Berendsen H J C (1978) Nature (London), 273, 443-446] of the role of the alpha helical dipole moment, the beta-sheets in the barrel can also have a considerable dipole moment contribution. Taken together with our dipole moment analysis on integral membrane proteins [Vasanthi G and Krishnaswamy S (2002) Indian J Biochem Biophys 39, 93-100], this suggests the need to examine the role of dipole moment in the case of especially beta sheets forming barrels.  相似文献   

15.
Alpha/beta barrel structures very similar to that first observed in triose phosphate isomerase are now known to occur in 14 enzymes. To understand the origin of this fold, we analyzed in three of these proteins the geometry of the eight-stranded beta-sheets and the packing of the residues at the center of the barrel. The packing in this region is seen in its simplest form in glycolate oxidase. It consists of 12 residues arranged in three layers. Each layer contains four side chains. The packing of RubisCO and TIM can be understood in terms of distortions of this simple pattern, caused by residues with small side chains at some of the positions inside the barrel. Two classes of packing are found. In one class, to which RubisCO and TIM belong, the central layer is formed by a residue from the first, third, fifth, and seventh strands; the upper and lower layers are formed by residues from the second, fourth, sixth, and eighth strands. In the second class, to which GAO belongs, this is reversed: it is side chains from the even-numbered strands that form the central layer, and side chains from the odd-numbered strands that form the outer layers. Our results suggest that not all proteins with this fold are related by evolution, but that they represent a common favorable solution to the structural problems involved in the creation of a closed beta barrel.  相似文献   

16.
After the surprisingly low number of genes identified in the human genome, alternative splicing emerged as a major mechanism to generate protein diversity in higher eukaryotes. However, it is still not known if its prevalence along the genome evolution has contributed to the overall functional protein diversity or if it simply reflects splicing noise. The (βα)8 barrel or TIM barrel is one of the most frequent, versatile, and ancient fold encountered among enzymes. Here, we analyze the structural modifications present in TIM barrel proteins from the human genome product of alternative splicing events. We found that 87% of all splicing events involved deletions; most of these events resulted in protein fragments that corresponded to the (βα)2, (βα)4, (βα)5, (βα)6, and (βα)7 subdomains of TIM barrels. Because approximately 7% of all the splicing events involved internal β-strand substitutions, we decided, based on the genomic data, to design β-strand and α-helix substitutions in a well-studied TIM barrel enzyme. The biochemical characterization of one of the chimeric variants suggests that some of the splice variants in the human genome with β-strand substitutions may be evolving novel functions via either the oligomeric state or substrate specificity. We provide results of how the splice variants represent subdomains that correlate with the independently folding and evolving structural units previously reported. This work is the first to observe a link between the structural features of the barrel and a recurrent genetic mechanism. Our results suggest that it is reasonable to expect that a sizeable fraction of splice variants found in the human genome represent structurally viable functional proteins. Our data provide additional support for the hypothesis of the origin of the TIM barrel fold through the assembly of smaller subdomains. We suggest a model of how nature explores new proteins through alternative splicing as a mechanism to diversify the proteins encoded in the human genome.  相似文献   

17.
The β-1,4-endoglucanase (EC 3.2.1.4) from the hyperthermophilic archaeon Pyrococcus horikoshii (EGPh) has strong hydrolyzing activity toward crystalline cellulose. When EGPh is used in combination with β-glucosidase (EC 3.2.1.21), cellulose is completely hydrolyzed to glucose at high temperature, suggesting great potential for EGPh in bioethanol industrial applications. The crystal structure of EGPh shows a triosephosphate isomerase (TIM) (β/α)(8)-barrel fold with an N-terminal antiparallel β-sheet at the opposite side of the active site and a very short C-terminal sequence outside of the barrel structure. We describe here the function of the peripheral sequences outside of the TIM barrel core structure. Sequential deletions were performed from both N and C termini. The activity, thermostability, and pH stability of the expressed mutants were assessed and compared to the wild-type EGPh enzyme. Our results demonstrate that the TIM barrel core is essential for enzyme activity and that the N-terminal β-sheet is critical for enzyme thermostability. Bioinformatics analyses identified potential key residues which may contribute to enzyme hyperthermostability.  相似文献   

18.
The beta-galactosidase from an extreme thermophile, Thermus thermophilus A4 (A4-beta-Gal), is thermostable and belongs to the glycoside hydrolase family 42 (GH-42). As the first known structures of a GH-42 enzyme, we determined the crystal structures of free and galactose-bound A4-beta-Gal at 1.6A and 2.2A resolution, respectively. A4-beta-Gal forms a homotrimeric structure resembling a flowerpot. Each monomer has an active site located inside a large central tunnel. The N-terminal domain of A4-beta-Gal has a TIM barrel fold, as predicted from hydrophobic cluster analysis. The putative catalytic residues of A4-beta-Gal (Glu141 and Glu312) superimpose well with the catalytic residues of Escherichia coli beta-galactosidase. The environment around the catalytic nucleophile (Glu312) is similar to that in the case of E.coli beta-galactosidase, but the recognition mechanism for a substrate is different. Trp182 of the next subunit of the trimer constitutes a part of the active-site pocket, indicating that the trimeric structure is essential for the enzyme activity. Structural comparison with other glycoside hydrolases revealed that many features of the 4/7 superfamily are conserved in the A4-beta-Gal structure. On the basis of the results of 1H NMR spectroscopy, A4-beta-Gal was determined to be a "retaining" enzyme. Interestingly, the active site was similar with those of retaining enzymes, but the overall fold of the TIM barrel domain was very similar to that of an inverting enzyme, beta-amylase.  相似文献   

19.
Nitroalkane oxidase (NAO) catalyzes neutral nitroalkanes to their corresponding aldehydes or ketones, hydrogen peroxide and nitrite. The crystal structure of NAO from Streptomyces ansochromogenes was determined; it consists of two domains, a TIM barrel domain bound to FMN and C-terminal domain with a novel folding pattern. Site-directed mutagenesis of His179, which is spatially adjacent to FMN, resulted in the loss of enzyme activity, demonstrating that this amino acid residue is important for catalysis. The crystal structure of mutant H179D-nitroethane was also analyzed. Interestingly, Sa-NAO shows the typical function as nitroalkane oxidase but its structure is similar to that of 2-nitropropane dioxygenase. Overall, these results suggest that Sa-NAO is a novel nitroalkane oxidase with TIM barrel structure.  相似文献   

20.
Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of l-ascorbate under anaerobic conditions. UlaD catalyzes a beta-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel beta-strands. The enzyme binds Zn(2+), which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the beta1/alpha1 loop and alpha3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands beta7 and beta8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号