首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The impact of adding heavy-resistance training to increase leg-muscle strength was studied in eight cycling- and running-trained subjects who were already at a steady-state level of performance. Strength training was performed 3 days/wk for 10 wk, whereas endurance training remained constant during this phase. After 10 wk, leg strength was increased by an average of 30%, but thigh girth and biopsied vastus lateralis muscle fiber areas (fast and slow twitch) and citrate synthase activities were unchanged. Maximal O2 uptake (VO2max) was also unchanged by heavy-resistance training during cycling (55 ml.kg-1.min-1) and treadmill running (60 ml.kg-1.min-1); however, short-term endurance (4-8 min) was increased by 11 and 13% (P less than 0.05) during cycling and running, respectively. Long-term cycling to exhaustion at 80% VO2max increased from 71 to 85 min (P less than 0.05) after the addition of strength training, whereas long-term running (10 km times) results were inconclusive. These data do not demonstrate any negative performance effects of adding heavy-resistance training to ongoing endurance-training regimens. They indicate that certain types of endurance performance, particularly those requiring fast-twitch fiber recruitment, can be improved by strength-training supplementation.  相似文献   

2.
Fifteen male endurance athletes were studied to determine the effect of a glucose polymer (GP) diet supplement on physiological and perceptual responses to successive swimming, cycling and running exercise. Thirty min of swimming, cycling and running at 70% VO2max, followed by a run to exhaustion at 90% VO2max was performed after one week of training under two dietary conditions: 1) GP (230 g of GP consumed daily) and 2) placebo (P, saccharin-sweetened supplement consumed daily). During GP, daily carbohydrate (CHO) intake was higher (p less than 0.05) by 173 g or 14% of energy intake than during P, but total energy intake was not significantly different. During 90 min of exercise, CHO utilization and blood glucose were significantly higher under GP than P by an average of 20.2% and 14.5%, respectively, but heart rate, ventilation, oxygen uptake, ratings of perceived exertion, and plasma lactate were not different. Run time to exhaustion at 90% VO2max was significantly longer by 1.2 min (23%) under GP. The results suggest that a GP diet supplement may be of value during endurance exercise by increasing the availability of CHO.  相似文献   

3.
The effects of dietary supplementation of dihydroxyacetone and pyruvate (DHAP) on endurance capacity and metabolic responses during arm exercise were determined in 10 untrained males (20-26 yr). Subjects performed arm ergometer exercise (60% peak O2 consumption) to exhaustion after consumption of standard diets (55% carbohydrate, 15% protein, 30% fat; 35 kcal/kg) containing either 100 g of Polycose (placebo, P) or DHAP (3:1, treatment) substituted for a portion of carbohydrate. The two diets were administered in a random order, and each was consumed for a 7-day period. Biopsy of the triceps muscle was obtained immediately before and after exercise. Blood samples were drawn through radial artery and axillary vein catheters at rest, after 60 min of exercise, and at exercise termination. Arm endurance was 133 +/- 20 min after P and 160 +/- 22 min after DHAP (P less than 0.01). Triceps glycogen at rest was 88 +/- 8 (P) and 130 +/- 19 mmol/kg (DHAP) (P less than 0.05). Whole arm arteriovenous glucose difference (mmol/l) was greater (P less than 0.05) for DHAP than P at rest (0.60 +/- 0.12 vs. 0.05 +/- 0.09) and after 60 min of exercise (1.00 +/- 0.12 vs. 0.36 +/- 0.11), but it did not differ at exhaustion. Neither respiratory exchange ratio nor respiratory quotient differed between trials at rest, after 60 min of exercise, or at exhaustion. Plasma free fatty acid, glycerol, beta-hydroxybutyrate, catecholamines, and insulin were similar during rest and exercise for both diets. Feeding DHAP for 7 days increased arm muscle glucose extraction before and during exercise, thereby enhancing submaximal arm endurance capacity.  相似文献   

4.
Race walking is the technical and athletic expression of fast walking and it can be considered as a type of endurance performance. The purpose of this study was to examine whether 12 weeks of a specially designed training program results in the further training enhancement of endurance performance and the related physiological parameters in already well-trained race walkers competing at the national and international level. The investigation protocol consisted of determining the maximal oxygen uptake (VO2peak) and related gas exchange values using an automated cardiopulmonary exercise system and of determining blood lactate variables (aerobic threshold - LTAer and the maximal lactate steady state - MLSS) during walking with proper technique at 8, 10, 12 and 14 km·h-1 for 4 minutes without rest in between. Thereafter, the speed on the treadmill was increased by 0.5 km·h-1 every two minutes until exhaustion to determine VO2peak. After 12 weeks of a specially designed endurance training, statistically significant increases in VO2peak (61.8±8.5 mL·kg-1·min-1 pre vs. 66.9±9.5 mL·kg-1·min-1 post training; p<0.05) and blood lactate variables (VO2-LTAer and VO2-MLSS; p<0.05) were noted. The obtained results suggest that the applied training program can improve endurance and race performance in previously well trained race walkers.  相似文献   

5.
We examined the effects of exercise intensity and a 10-wk cycle ergometer training program [5 days/wk, 1 h, 75% peak oxygen consumption (VO2 peak)] on plasma free fatty acid (FFA) flux, total fat oxidation, and whole body lipolysis in healthy male subjects (n = 10; age = 25.6 +/- 1.0 yr). Two pretraining trials (45 and 65% of VO2 peak) and two posttraining trials (same absolute workload, 65% of old VO2 peak; and same relative workload, 65% of new VO2 peak) were performed by using an infusion of [1-13C]palmitate and [1,1,2,3, 3-2H]glycerol. An additional nine subjects (age 25.4 +/- 0.8 yr) were treated similarly but were infused with [1,1,2,3,3-2H]glycerol and not [1-13C]palmitate. Subjects were studied postabsorptive for 90 min of rest and 1 h of cycling exercise. After training, subjects increased VO2 peak by 9.4 +/- 1.4%. Pretraining, plasma FFA kinetics were inversely related to exercise intensity with rates of appearance (Ra) and disappearance (Rd) being significantly higher at 45 than at 65% VO2 peak (Ra: 8.14 +/- 1.28 vs. 6.64 +/- 0.46, Rd: 8. 03 +/- 1.28 vs. 6.42 +/- 0.41 mol. kg-1. min-1) (P 相似文献   

6.
For many years, it was believed that ventilation does not limit performance in healthy humans. Recently, however, it has been shown that inspiratory muscles can become fatigued during intense endurance exercise and decrease their exercise performance. Therefore, it is not surprising that respiratory endurance training can prolong intense constant-intensity cycling exercise. To investigate the effects of respiratory endurance training on blood lactate concentration and oxygen consumption (VO2) during exercise and their relationship to performance, 20 healthy, active subjects underwent 30 min of voluntary, isocapnic hyperpnoea 5 days a week, for 4 weeks. Respiratory endurance tests, as well as incremental and constant-intensity exercise tests on a cycle ergometer, were performed before and after the 4-week period. Respiratory endurance increased from 4.6 (SD 2.5) to 29.1 (SD 4.0) min (P < 0.001) and cycling endurance time was prolonged from 20.9 (SD 5.5) to 26.6 (SD 11.8) min (P < 0.01) after respiratory training. The VO2 did not change at any exercise intensity whereas blood lactate concentration was lower at the end of the incremental [10.4 (SD 2.1) vs 8.8 (SD 1.9) mmol x l(-1), P < 0.001] as well as at the end of the endurance exercise [10.4 (SD 3.6) vs 9.6 (SD 2.7) mmol x l(-1), P < 0.01] test after respiratory training. We speculate that the reduction in blood lactate concentration was most likely caused by an improved lactate uptake by the trained respiratory muscles. However, reduced exercise blood lactate concentrations per se are unlikely to explain the improved cycling performance after respiratory endurance training.  相似文献   

7.
The present study examined whether a high caffeine dose improved running and cycling performance and altered substrate metabolism in well-trained runners. Seven trained competitive runners [maximal O2 uptake (VO2max) 72.6 +/- 1.5 ml.kg-1.min-1] completed four randomized and double-blind exercise trials at approximately 85% VO2max; two trials running to exhaustion and two trials cycling to exhaustion. Subjects ingested either placebo (PL, 9 mg/kg dextrose) or caffeine (CAF, 9 mg/kg) 1 h before exercise. Endurance times were increased (P less than 0.05) after CAF ingestion during running (PL 49.2 +/- 7.2 min, CAF 71.0 +/- 11.0 min) and cycling (PL 39.2 +/- 6.5 min, CAF 59.3 +/- 9.9 min). Plasma epinephrine concentration [EPI] was increased (P less than 0.05) with CAF before running (0.22 +/- 0.02 vs. 0.44 +/- 0.08 nM) and cycling (0.31 +/- 0.06 vs. 0.45 +/- 0.06 nM). CAF ingestion also increased [EPI] (P less than 0.05) during exercise; PL and CAF values at 15 min were 1.23 +/- 0.13 and 2.51 +/- 0.33 nM for running and 1.24 +/- 0.24 and 2.53 +/- 0.32 nM for cycling. Similar results were obtained at exhaustion. Plasma norepinephrine was unaffected by CAF at rest and during exercise. CAF ingestion also had no effect on respiratory exchange ratio or plasma free fatty acid data at rest or during exercise. Plasma glycerol was elevated (P less than 0.05) by CAF before exercise and at 15 min and exhaustion during running but only at exhaustion during cycling. Urinary [CAF] increased to 8.7 +/- 1.2 and 10.0 +/- 0.8 micrograms/ml after the running and cycling trials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The influence of tapering on the metabolic and performance parameters in endurance cyclists was investigated. Cyclists (n = 25) trained 5 days.week-1, 60 min.day-1, at 75-85% maximal oxygen consumption (VO2max) for 8 weeks and were then randomly assigned to a taper group: 4D (4 days; n = 7), 8D (8 days; n = 6), CON (control, 4 days rest; n = 6), NOTAPER (non-taper, continued training; n = 6). Muscle biopsy specimens taken before and after training and tapering were analysed for carnitine palmityltransferase (CPT), citrate synthase, beta-hydroxyacyl CoA dehydrogenase (HOAD), cytochrome oxidase (CYTOX), lactate dehydrogenase, glycogen and protein. Significant increases in VO2max (6%), a 60-min endurance cycle test (34.5%), oxidative enzymes (77-178%), glycogen (35%) and protein (34%) occurred following training. After the taper, HOAD and CPT decreased 25% (P less than 0.05) and 26% respectively, in the CON. Post-taper CYTOX values were different (P less than 0.05) for 4D and 8D compared with CON. Muscle glycogen levels were increased (P less than 0.05) after tapering in the 4D, 8D and CON, but decreased in NOTAPER. Similarly, power output at ventilation threshold was significantly increased in the 4D (27.4 W) and 8D (27 W) groups, but decreased (22 W) in the NOTAPER. These findings suggest that tapering elicited a physiological adaptation by altering oxidative enzymes and muscle glycogen levels. Such an adaptation may influence endurance cycling during a laboratory performance test.  相似文献   

9.
Gender differences in substrate selection have been reported during endurance exercise. To date, no studies have looked at muscle enzyme adaptations following endurance exercise training in both genders. We investigated the effect of a 7-week endurance exercise training program on the activity of beta-oxidation, tricarboxylic acid cycle and electron transport chain enzymes, and fiber type distribution in males and females. Training resulted in an increase in VO2peak, for both males and females of 17% and 22%, respectively (P < 0.001). The following muscle enzyme activities increased similarly in both genders: 3-beta-hydroxyacyl CoA dehydrogenase (38%), citrate synthase (41%), succinate-cytochrome c oxidoreductase (41%), and cytochrome c oxidase (COX; 26%). The increase in COX activity was correlated (R2 = 0.52, P < 0.05) with the increase in VO2peak/fat free mass. Fiber area, size, and % area were not affected by training for either gender, however, males had larger Type II fibers (P < 0.05) and females had a greater Type I fiber % area (P < 0.05). Endurance training resulted in similar increases in skeletal muscle oxidative potential for both males and females. Training did not affect fiber type distribution or size in either gender.  相似文献   

10.
The objective of the present study was to compare pulmonary gas exchange kinetics (VO2 kinetics) and time to exhaustion (Tlim) between trained and untrained individuals during severe exercise performed on a cycle ergometer and treadmill. Eleven untrained males in running (UR) and cycling (UC), nine endurance cyclists (EC), and seven endurance runners (ER) were submitted to the following tests on separate days: (i) incremental test for determination of maximal oxygen uptake (VO2max) and the intensity associated with the achievement of VO2max (IVO2max) on a mechanical braked cycle ergometer (EC and UC) and on a treadmill (ER and UR); (ii) all-out exercise bout performed at IVO2max to determine the time to exhaustion at IVO2max (Tlim) and the time constant of oxygen uptake kinetics (tau). The tau was significantly faster in trained group, both in cycling (EC = 28.2 +/- 4.7s; UC = 63.8 +/- 25.0s) and in running (ER = 28.5 +/- 8.5s; UR = 59.3 +/- 12.0s). Tlim of untrained was significantly lower in cycling (EC = 384.4 +/- 66.6s vs. UC; 311.1 +/- 105.7 s) and higher in running (ER = 309.2 +/- 176.6 s vs. UR = 439.8 +/- 104.2 s). We conclude that the VO2 kinetic response at the onset of severe exercise, carried out at the same relative intensity is sensitive to endurance training, irrespective of the exercise type. The endurance training seems to differently influence Tlim during exercise at IVO2max in running and cycling.  相似文献   

11.
Parra et al. (Acta Physiol. Scand 169: 157-165, 2000) showed that 2 wk of daily sprint interval training (SIT) increased citrate synthase (CS) maximal activity but did not change "anaerobic" work capacity, possibly because of chronic fatigue induced by daily training. The effect of fewer SIT sessions on muscle oxidative potential is unknown, and aside from changes in peak oxygen uptake (Vo(2 peak)), no study has examined the effect of SIT on "aerobic" exercise capacity. We tested the hypothesis that six sessions of SIT, performed over 2 wk with 1-2 days rest between sessions to promote recovery, would increase CS maximal activity and endurance capacity during cycling at approximately 80% Vo(2 peak). Eight recreationally active subjects [age = 22 +/- 1 yr; Vo(2 peak) = 45 +/- 3 ml.kg(-1).min(-1) (mean +/- SE)] were studied before and 3 days after SIT. Each training session consisted of four to seven "all-out" 30-s Wingate tests with 4 min of recovery. After SIT, CS maximal activity increased by 38% (5.5 +/- 1.0 vs. 4.0 +/- 0.7 mmol.kg protein(-1).h(-1)) and resting muscle glycogen content increased by 26% (614 +/- 39 vs. 489 +/- 57 mmol/kg dry wt) (both P < 0.05). Most strikingly, cycle endurance capacity increased by 100% after SIT (51 +/- 11 vs. 26 +/- 5 min; P < 0.05), despite no change in Vo(2 peak). The coefficient of variation for the cycle test was 12.0%, and a control group (n = 8) showed no change in performance when tested approximately 2 wk apart without SIT. We conclude that short sprint interval training (approximately 15 min of intense exercise over 2 wk) increased muscle oxidative potential and doubled endurance capacity during intense aerobic cycling in recreationally active individuals.  相似文献   

12.
Three female and three male highly trained endurance runners with mean maximal oxygen uptake (VO2max) values of 60.5 and 71.5 ml.kg-1.min-1, respectively, ran to exhaustion at 75%-80% of VO2max on two occasions after an overnight fast. One experiment was performed after a normal diet and training regimen (Norm), the other after a diet and training programme intended to increase muscle glycogen levels (Carb). Muscle glycogen concentration in the gastrocnemius muscle increased by 25% (P less than 0.05) from 581 mmol.kg-1 dry weight, SEM 50 to 722 mmol.kg-1 dry weight, SEM 34 after Carb. Running time to exhaustion, however, was not significantly different in Carb and Norm, 77 min, SEM 13 vs 70 min, SEM 8, respectively. The average glycogen concentration following exhaustive running was 553 mmol.kg-1 dry weight, SEM 70 in Carb and 434 mmol.kg-1 dry weight, SEM 57 in Norm, indicating that in both tests muscle glycogen stores were decreased by about 25%. Periodic acid-Schiff staining for semi-quantitative glycogen determination in individual fibres confirmed that none of the fibres appeared to be glycogen-empty after exhaustive running. The steady-state respiratory exchange ratio was higher in Carb than in Norm (0.92, SEM 0.01 vs 0.89, SEM 0.01; P less than 0.05). Since muscle glycogen utilization was identical in the two tests, the indication of higher utilization of total carbohydrate appears to be related to a higher utilization of liver glycogen. We have concluded that glycogen depletion of the gastrocnemius muscle is unlikely to be the cause of fatigue during exhaustive running at 75%-80% of VO2max in highly trained endurance runners. Furthermore, diet- and training-induced carbohydrate super-compensation does not appear to improve endurance capacity in such individuals.  相似文献   

13.
We studied the effects of a 38-day endurance exercise training program on leucine turnover and substrate metabolism during a 90-min exercise bout at 60% peak O(2) consumption (VO(2 peak)) in 6 males and 6 females. Subjects were studied at both the same absolute (ABS) and relative (REL) exercise intensities posttraining. Training resulted in a significant increase in whole body VO(2 peak) and skeletal muscle citrate synthase (CS; P < 0.001), complex I-III (P < 0.05), and total branched-chain 2-oxoacid dehydrogenase (BCOAD; P < 0.001) activities. Leucine oxidation increased during exercise for the pretraining trial (PRE, P < 0.001); however, there was no increase for either the ABS or REL posttraining trial. Leucine oxidation was significantly lower for females at all time points during rest and exercise (P < 0.01). The percentage of BCOAD in the activated state was significantly increased after exercise for both the PRE and REL exercise trials, with the increase in PRE being greater (P < 0.001) compared with REL (P < 0.05). Females oxidized proportionately more lipid and less carbohydrate during exercise compared with males. In conclusion, we found that 38 days of endurance exercise training significantly attenuated both leucine oxidation and BCOAD activation during 90 min of endurance exercise at 60% VO(2 peak) for both ABS and REL exercise intensities. Furthermore, females oxidize proportionately more lipid and less carbohydrate compared with males during endurance exercise.  相似文献   

14.
The purpose of this study was to investigate the effects of a concurrent strength and endurance training program on running performance and running economy of middle-aged runners during their marathon preparation. Twenty-two (8 women and 14 men) recreational runners (mean ± SD: age 40.0 ± 11.7 years; body mass index 22.6 ± 2.1 kg·m?2) were separated into 2 groups (n = 11; combined endurance running and strength training program [ES]: 9 men, 2 women and endurance running [E]: 7 men, and 4 women). Both completed an 8-week intervention period that consisted of either endurance training (E: 276 ± 108 minute running per week) or a combined endurance and strength training program (ES: 240 ± 121-minute running plus 2 strength training sessions per week [120 minutes]). Strength training was focused on trunk (strength endurance program) and leg muscles (high-intensity program). Before and after the intervention, subjects completed an incremental treadmill run and maximal isometric strength tests. The initial values for VO2peak (ES: 52.0 ± 6.1 vs. E: 51.1 ± 7.5 ml·kg?1·min?1) and anaerobic threshold (ES: 3.5 ± 0.4 vs. E: 3.4 ± 0.5 m·s?1) were identical in both groups. A significant time × intervention effect was found for maximal isometric force of knee extension (ES: from 4.6 ± 1.4 to 6.2 ± 1.0 N·kg?1, p < 0.01), whereas no changes in body mass occurred. No significant differences between the groups and no significant interaction (time × intervention) were found for VO2 (absolute and relative to VO2peak) at defined marathon running velocities (2.4 and 2.8 m·s?1) and submaximal blood lactate thresholds (2.0, 3.0, and 4.0 mmol·L?1). Stride length and stride frequency also remained unchanged. The results suggest no benefits of an 8-week concurrent strength training for running economy and coordination of recreational marathon runners despite a clear improvement in leg strength, maybe because of an insufficient sample size or a short intervention period.  相似文献   

15.
To determine if prolonged fasting affects substrate utilization and endurance time, seven trained men exercised to exhaustion on a cycle ergometer at 50% maximum oxygen consumption (VO2max) in an overnight-fasted [postabsorptive (PA)] state and after a 36-h fast (F). Fasting produced significant elevations in the resting concentrations of blood free fatty acids (FFA; 1.16 +/- 0.05 vs. 0.56 +/- 0.06 mM, F vs. PA, respectively, a 107% increase), beta-hydroxybutyrate (beta-OH, 2.06 +/- 0.66 vs. 0.15 +/- 0.06 mM, a 1,270% increase), and glycerol (0.12 +/- 0.03 vs. 0.04 +/- 0.01 mM, a 200% increase), with a significant decline in glucose (79.79 +/- 2.12 vs. 98.88 +/- 3.11 mg/dl, a 19% decrease). Exercise in the F trial increased FFA, decreased glucose, and significantly elevated beta-OH and glycerol over the PA trial. There was no difference in blood glucose concentration between trials at exhaustion. However, F produced a significant decrement in exercise endurance time compared with the PA trial (88.9 +/- 18.3 vs. 144.4 +/- 22.6 min, F vs. PA, a 38% decrease). Based on the respiratory exchange ratio, fasting led to a greater utilization of lipids during rest and exercise. It was concluded that 1) a 36-h fast significantly altered substrate utilization at rest and throughout exercise to exhaustion, 2) glucose levels do not appear to be the single determinant of time to exhaustion in submaximal exercise, and 3) despite the apparent sparing of carbohydrate utilization with the 36-h fast, endurance performance was significantly decreased.  相似文献   

16.
The resting content and use of myocellular triacylglycerol (MCTG) during 90 min of submaximal exercise [60% of peak oxygen uptake (VO(2 peak))] were studied in 21 eumenorrheic female and 21 male subjects at different training levels [untrained (UT), moderately trained (MT), and endurance trained (END)]. Males and females were matched according to their VO(2 peak) expressed relative to lean body mass, physical activity level, and training history. All subjects ingested the same controlled diet for 8 days, and all females were tested in the midfollicular phase of the menstrual cycle. Resting MCTG, measured with the muscle biopsy technique, averaged 48.4 +/- 4.2, 48.5 +/- 8.4, and 52.2 +/- 5.8 mmol/kg dry wt in UT, MT, and END females, respectively, and 34.1 +/- 4.9, 31.6 +/- 3.3, and 38.4 +/- 3.0 mmol/kg dry wt in UT, MT, and END males, respectively (P < 0.001, females vs. males in all groups). Exercise decreased MCTG content in the female subjects by an average of 25%, regardless of training status, whereas in the male groups MCTG content was unaffected by exercise. The arterial plasma insulin concentration was higher (P < 0.05) and the arterial plasma epinephrine concentration was lower (P < 0.05) in the females than in the males at rest and during exercise. MCTG use was correlated to the resting concentration of MCTG (P < 0.001). We conclude that resting content and use of MCTG during exercise are related to gender and furthermore are independent of training status.  相似文献   

17.
Exercise metabolism at different time intervals after a meal   总被引:5,自引:0,他引:5  
To determine how long a meal will affect the metabolic response to exercise, nine endurance-trained and nine untrained subjects cycled for 30 min at 70% of peak O2 consumption (VO2 peak) 2, 4, 6, 8, and 12 h after eating 2 g carbohydrate/kg body wt. In addition, each subject completed 30 min of cycling 4 h after the meal at an intensity that elicited a respiratory exchange ratio (RER) of 0.94-0.95. During exercise after 2 and 4 h of fasting, carbohydrate oxidation was elevated 13-15% compared with the response to exercise after an 8- and 12-h fast (P less than 0.01). The increase in blood glycerol concentration during exercise (30 to 0 min) was linearly related to the length of fasting (r = 0.99; P less than 0.01). In all subjects, plasma glucose concentration declined 17-21% during exercise after 2 h of fasting (P less than 0.01). Plasma glucose concentration also declined (15-25%) during exercise in the trained subjects after 4 and 6 h of fasting (P less than 0.05) but did not change in the untrained subjects. However, the decline in plasma glucose concentration was similar (14%) in the two groups when the exercise intensity was increased in the trained subjects (i.e., 78 +/- 1% VO2 peak) and decreased in the untrained subjects (i.e., 65 +/- 3% VO2 peak) to elicit a similar RER.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Open-water swimming (5, 10, and 25 km) has many unique challenges that separate it from other endurance sports, like marathon running and cycling. The characteristics of a successful open-water swimmer are unclear. The purpose of this study was to determine the physical and metabolic characteristics of a group of elite-level open-water swimmers. The open-water swimmers were participating in a 1-week training camp. Anthropometric, metabolic, and blood chemistry assessments were performed on the athletes. The swimmers had a VO(2)peak of 5.51 +/- 0.96 and 5.06 +/- 0.57 ml.kg(-1).min(-1) for males and females, respectively. Their lactate threshold (LT) occurred at a pace equal to 88.75% of peak pace for males and 93.75% for females. These elite open-water swimmers were smaller and lighter than competitive pool swimmers. They possess aerobic metabolic alterations that resulted in enhanced performance in distance swimming. Trainers and coaches should develop dry-land programs that will improve the athlete's muscular endurance. Furthermore, programs should be designed to increase the LT velocity as a percentage of peak swimming velocity.  相似文献   

19.
The effects of dietary supplementation of dihydroxyacetone and pyruvate (DHAP) on metabolic responses and endurance capacity during leg exercise were determined in eight untrained males (20-30 yr). During the 7 days before exercise, a high-carbohydrate diet was consumed (70% carbohydrate, 18% protein, 12% fat; 35 kcal/kg body weight). One hundred grams of either Polycose (placebo) or dihydroxyacetone and pyruvate (treatment, 3:1) were substituted for a portion of carbohydrate. Dietary conditions were randomized, and subjects consumed each diet separated by 7-14 days. After each diet, cycle ergometer exercise (70% of peak oxygen consumption) was performed to exhaustion. Biopsy of the vastus lateralis muscle was obtained before and after exercise. Blood samples were drawn through radial artery and femoral vein catheters at rest, after 30 min of exercise, and at exercise termination. Leg endurance was 66 +/- 4 and 79 +/- 2 min after placebo and DHAP, respectively (P less than 0.01). Muscle glycogen at rest and exhaustion did not differ between diets. Whole leg arteriovenous glucose difference was greater (P less than 0.05) for DHAP than for placebo at rest (0.36 +/- 0.05 vs. 0.19 +/- 0.07 mM) and after 30 min of exercise (1.06 +/- 0.14 vs. 0.65 +/- 0.10 mM) but did not differ at exhaustion. Plasma free fatty acids, glycerol, and beta-hydroxybutyrate were similar during rest and exercise for both diets. Estimated total glucose oxidation during exercise was 165 +/- 17 and 203 +/- 15 g after placebo and DHAP, respectively (P less than 0.05). It is concluded that feeding of DHAP for 7 days in conjunction with a high carbohydrate diet enhances leg exercise endurance capacity by increasing glucose extraction by muscle.  相似文献   

20.
We investigated the effect of endurance training on whole body substrate, glucose, and glycerol utilization during 90 min of exercise at 60% peak O2 consumption (VO2(peak)) in males and females. Substrate oxidation was determined before and after 7 wk of endurance training on a cycle ergometer, with posttesting performed at the same absolute (ABS, W) and relative (REL, VO2(peak)) intensities. [6,6-2H]glucose and [1,1,2,3,3-2H]glycerol tracers were used to calculate the respective substrate tracee flux. Endurance training resulted in an increase in VO2(peak) for both males and females of 17 and 22%, respectively (P < 0.001). Females demonstrated a lower respiratory exchange ratio (RER) both pretraining and posttraining compared with males during exercise (P < 0.001). Glucose rate of appearance (R(a)) and rate of disappearance (R(d)) were not different between males and females. Glucose metabolic clearance rate (MCR) was lower at 75 and 90 min of exercise for females compared with males (P < 0.05). Glucose R(a) and R(d) were lower during exercise at both ABS and REL posttraining exercise intensities compared with pretraining (P < 0.001). Females had a higher exercise glycerol R(a) and R(d) compared with males both pre- and posttraining (P < 0.001). Glycerol R(a) was not different at either the ABS or REL posttraining exercise intensities compared with pretraining. We concluded that females oxidize proportionately more lipid and less carbohydrate during exercise compared with males both pre- and posttraining, which was cotemporal with a higher glycerol R(a) in females. Furthermore, endurance training resulted in a decrease in glucose flux at both ABS and REL exercise intensities after endurance exercise training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号